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1 INTRODUCTION

1.1 Motivation

The aerodynamic characteristics (e.g., lift, drag and moment) of an airfoil in unsteady

motion are significantly affected by the viscous boundary layer. Under certain condi-

tions, the boundary layer on an airfoil in pitching motion separates from the airfoil

surface, forming a large concentrated region of vorticity known as the dynamic stall

vortex. This phenomenon is characterized by dramatic changes in the aerodynamic per-

formance (e.g., a rapid change in the moment) of the airfoil, and is of significant interest

to rotorcraft, for example. However, the complex unsteady effects have not yet been

completely understood, and there is a need for more fundamental research in this field.

Boundary layer separation is an integral part of the dynamic stall. Qualitatively,

boundary layer separation is the breakdown of the boundary layer model which divides

the flow into two weakly interacting regions (i.e., an irrotational flow occupying most

of the fluid volume and a thin viscous region adjacent to the solid boundary). For 2-D

steady flows, the criterion for boundary layer separation is well known, and indicated by

the appearance of zero shear stress at the surface. For a pitching airfoil, the breakdown of

the boundary layer (separation) is preceded by the formation of a large scale recirculating

region' above the airfoil surface. The recirculating region grows in size in both transverse

and normal directions and at a later stage detaches from the airfoil surface (separation)

to give rise to the phenomenon of dynamic stall.

The focus of the present research is the understanding of the initial ("incipient")

stages of boundary layer separation over a pitching airfoil, with particular emphasis on

the details of the separation phenomenon near the leading edge. Improved understanding

of the incipient stages of boundary layer separation may lead to methods for modification

'A recirculating region can be defined as a flow possessing vorticity with closed streamlines.



or control of the separation process.

1.2 Literature Survey

A number of recent research activities have focused on the study of the processes lead-

ing to the dynamic stall and the dynamic stall phenomenon itself. Experimental studies

have continued to provide very important insights into the physics of the dynamic stall

process. McCroskey et al [24] studied incompressible boundary layer separation using oil

smoke visualization and described the three different types of boundary layer separation

observed in the case of an oscillating airfoil. Acharya and Metwally [1] categorized and

quantified the sources of vorticity and identified the key mechanisms in the initiation,

development, growth and movement of the dynamic stall vortex. Chandrasekhara and

Ahmed [8] obtained the instantaneous velocity measurements over an oscillating airfoil

in a compressible medium which showed the formation of the separation bubble over

the airfoil that persists until angles close to when the dynamic stall vortex forms and

convects. Carr et al [5] studied dynamic stall using real time interferometry and the

measurements of the flow near the leading edge of an oscillating airfoil offered the de-

tailed experimental quantification of the locally compressible flow field that surrounds

an oscillating airfoil at moderate subsonic Mach numbers and also revealed significant

characteristics of the complex, and rapidly varying locally supersonic flow. Karim [18]

experimentally studied the evolution of the dynamic stall vortex in the vicinity of lead-

ing edge of a 2-D pitching airfoil using smoke-wires and studied the pitch rate effects on

the growth of the dynamic stall vortex. He also investigated the control of dynamic stall

using suction. Chandrasekhara et al [9] used real-time point diffraction interferometry

to study the compressible dynamic stall over a airfoil pitching at a constant rate and

observed the appearance of small multiple shocks near the leading edge above the shear

layer for free stream Mach numbers above 0.4. Crisler et al [11] investigated the un-

steady flow over a airfoil pitching at a constant rate using a Particle Image Velocimetry

(PIV) system and identified the role of absolute instability of a separating shear layer

in the dynamic stall process.

Computational studies have long been used to improve the understanding of the

2



unsteady flow behavior. Mehta [26] computed the laminar flow past an oscillating airfoil

at Reynolds numbers (based on the airfoil chord) of 5 X 103 and 10' to gain insight into

the mechanism of dynamic stall. He qualitatively compared his computed instantaneous

streamlines with the trajectories of air bubbles2 observed in water tunnel experiments.

Shih et al [37] observed that the leading edge boundary layer separation leads to the

formation of a vortical structure which dominates the aerodynamic performance. Ghia

et al [15] and Yang et al [58] analyzed the effect of modulated suction or injection in

delaying the onset of dynamic stall over pitching NACA airfoils and also successfully

compared their computational results with the previous computations of Mehta [26]

and the experimental results for Re, = 10' and Re, = 4.5 X 104 . They monitored the

separation and through numerical experimentation devised suitable leading-edge suction

and equal mass of trailing edge injection (necessary to maintain zero net normal mass

addition and to keep the boundary condition at infinity unchanged, due to the use of

streamfunction-vorticity formulation and constant vorticity boundary condition around

the airfoil) to manage the evolution of the dynamic stall vortex, and depicted the role

of separation in the formation of the stall vortex. Visbal [52] presented investigations

of flow control by boundary layer suction and a moving wall. He also investigated

the effect of compressibility on dynamic stall and determined that an increase in Mach

number reduces the stall delay [51]. Currier and Fung [12] found that with increasing

unsteadiness the delay between static stall angle and dynamics stall onset decreases.

Shida et al [36] computed the flowfield around an oscillating NACA-0012 airfoil by

solving the two-dimensional compressible Navier-Stokes equations employing a block

pentadiagonal matrix scheme and were able to capture the lift stall and lift restoration

in the downstroke of the airfoil motion.

Analytical studies have been very helpful in the fundamental understanding of un-

steady separation and linking the physics with the experimental and numerical obser-

vations. Doligalski et al [13] have reviewed some of the important studies conducted on

vortex interactions and separation including dynamic stall. Smith [38, 39, 41] described

the instability of a leading edge separation bubble and finite time breakup of the bound-

ary layer. He found that initially unsteady developments take place over a relatively

2Air bubble trajectories are not instantaneous streamlines in an unsteady flow.
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slow time scale but then the corresponding solution breaks down with a singularity,

forcing a switch to a faster and more nonlinear process. Peridier et al [28, 29] examined

the interaction of a vortex with a boundary layer. Some additional research has also

focused on some geometrically simpler configurations such as a circular cylinder set into

motion impulsively [47, 40]. Improved understanding of the temporal and spatial scales

associated with the dynamic stall process have been obtained from these studies.

Comprehensive reviews of advances in the field of computational and experimental

studies of dynamic stall have been presented by Carr [4] and Carr and McCroskey [6].

1.3 Present Research

The main objective of the present paper is improved understanding of the effects of

compressibility, pitch rate and Reynolds number on the initial stages of unsteady leading

edge boundary layer separation for a pitching airfoil. An NACA-0012 airfoil has been

selected, consistent with previous computational and experimental studies. Figure 1

shows schematically the typical stages in the pitch up motion of an airfoil, where the

instantaneous streamlines are displayed in a reference frame attached to the airfoil. At

low angles of attack, the flow is attached to the airfoil surface and there is no reversed

flow present in the flowfield. With increase in the angle of attack, a reverse flow region

forms over the airfoil top surface and finally extends up to the leading edge. A leading

edge vortex forms over the airfoil which eventually moves away from the airfoil surface

to give rise to dynamic stall. The present research deals with the understanding of the

stages from (b) (attached flow) through (e) (dynamic stall), but not including dynamic

stall itself.

The three-dimensional parameter space of Mach number, pitch rate and Reynolds

number has been investigated (where the Reynolds number is based on the chord length

c and the non-dimensional pitch rate is Q+ = Qc/Uo•, where Q is the pitch rate in

rad/s and U, is the freestream velocity). The seven points studied in the three-

dimensional space are indicated by solid circles in figure 2. Some of the previous lam-

inar Navier-Stokes simulations of a pitching airfoil due to other researchers have also

been indicated on the figure. Computations have been performed using two different

4



(a) (b)

Angle of attack =0 degree attached flow

(c) (d)

reversed flow leading edge vortex forms

(e) (f)
dynamic stall full stall

stall vortex

Figure 1: Stages in the pitching of an airfoil

numerical algorithms. The first algorithm, denoted the structured grid algorithm, is

an approximate-factorization implementation of Beam-Warming's method [2] using a

structured, boundary-fitted grid system. The second algorithm [20], denoted the un-

structured grid algorithm, employs an unstructured grid of triangles and utilizes the

flux-differencing splitting method of Roe [34] for the inviscid fluxes and a discrete rep-

resentation of Gauss' Theorem for the viscous fluxes and heat transfer. The structured

grid algorithm is implicit, while the unstructured grid algorithm (as employed in this

study) is explicit. Both algorithms are second order accurate in space and time. The

structured grid solver has been employed to compute all the seven cases. The unstruc-



tured grid solver has been employed to compute one of the cases in order to provide

an independent examination of the accuracy of the computations. The airfoil is pitched

about the quarter chord axis. The flow conditions for the seven computed cases were

chosen on the basis of simplicity and feasibility. The Reynolds numbers were selected

to ensure laminar flow. The Mach numbers were chosen to obtain subsonic flow in one

case and regions of supersonic flow in the other case. The studies were conducted with

special emphasis on understanding the leading edge separation, of course. The boundary

layer separates near the trailing edge very early in the pitch up motion, but for most

of the cases it is the separation of the boundary layer near the leading edge which is

responsible for the eventual dynamic stall process.
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(0.4)
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"(0.2) (0.2) 0 Ghiaetal.
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CU- -.A (0.05) (0.2) * present study. 6 .. F -.. - /

+ - -;0.1)
-.N .(0. 5)

2 0

(0.2) oo 0

QO 0C>
00 

0 0 6

c' -- o'o0 0\

0 g O

Figure 2: Points investigated in the three-dimensional parameter space (pitch rate value

is indicated by the number in the bracket)

The early study of Ghosh Choudhuri et al [16] at Re, = 10', M, = 0.2, and non-

dimensional pitch rate Q+ = 0.2 reported the appearance of the primary recirculating

region (a flow structure possessing vorticity with closed streamlines) to be a very impor-

tant development leading to the separation process. The primary recirculating region

eventually separates from the airfoil surface to give rise to the dynamic stall vortex.
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Therefore, the appearance of the primary recirculating region has been closely moni-

tored. A linear stability analysis has also been conducted to determine whether the

appearance of the primary recirculating region is related to the instability of the flow-

field.

This study differs from previous computational studies in the following aspects

"* This is a comprehensive study of an expanded three-dimensional parametric space

of Mach number, pitch rate and Reynolds number.

"* The initial stages of the development of the boundary layer leading to the devel-

opment of the dynamic stall vortex has been studied.

"* A linear stability analysis has been performed to understand the reason for the

formation of the primary recirculating region.

The governing equations for the numerical simulations utilizing structured and un-

structured grid algorithms have been presented in sections 2 and 4, respectively. The

algorithms have been described in detail in sections 3 and 5. These sections also contain

details about the boundary conditions used for the numerical simulations. Sections 6

and 7 discuss the code validation study for a number of cases through comparison with

analytical or previous computations. Section 8 specifies the problem itself. Section 9

consists of the results for the present study. Section 10 provides a summary of the

important results and future work.
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2 GOVERNING EQUATION

(STRUCTURED GRID)

The governing equations employed for the numerical simulation of unsteady flow

past an airfoil utilizing a structured grid are presented in this chapter. The equations are

the two-dimensional, unsteady, compressible, laminar Navier-Stokes equations written

in strong conservation form for general curvilinear coordinates.

2.1 Equations in Cartesian Coordinates

The unsteady, compressible, two-dimensional Navier-Stokes equations in strong con-

servation form can be expressed in the Cartesian coordinates in the following form
au OP" ad ajý 0ýo-U + _X+ WY- = T_ (1)

where

P Pu PIV 0 0
pu pu 2 + p puv TXX TXy

u- =-P •=;=; = (2)
PV puv PV 2 + p "rY 7'yy

pe )u(p +pe) v(p +pe) R4 4SJ

and

r=; = (A + 21t)ux + Avy

TXY = 4(uY + v.)

ry = (A + 2p)vy + Au,

R4 = UT7x + VT., + 9pTy

S4 = uT-y + V-ry + Cp Ty

The density, p, static pressure, p, and the absolute temperature, T, obey the equation

of state

p=pRT = p(y- 1){e- 1(u2 + v2)} (3)
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where R is the Universal gas constant, e is the total energy per unit mass, A is the second

coefficient of viscosity (A = -2/3yt), and -y is the ratio of specific heats.

The dynamic molecular viscosity is assumed to satisfy Sutherland's relation [56]:

y =(To T. + S1 4
T_(f) 2(4)

where S1 is the Sutherland's reference temperature (198°R for air), and Io = JIM).

The molecular Prandtl number, Pr (0.73 for air), and the specific heat at constant

pressure, Cp, are assumed constant.

2.2 Equations in General Curvilinear Coordinates

The aerodynamic flow over an airfoil is characterized by a relatively complex con-

figuration. It is very difficult to describe such configurations in the standard cartesian

or polar coordinates. Writing the governing equations in terms of general "boundary-

conforming" curvilinear coordinates helps in simplifying the numerical simulation of

aerodynamic flows. The physical boundaries of the flow are mapped into constant trans-

formed coordinate lines, and this eliminates the inaccuracies and the need for interpola-

tion in the numerical implementation of the boundary conditions. It also allows a more

efficient resolution of the features of the flow when high gradients are associated.

A time dependent non-singular transformation is introduced : (x, y) -+ (ý, Y), where

= ((x, y, t), and q = 'q(x, y, t). With this transformation the Navier-Stokes equations

(Eqn. (1)) can be written as [43]:

Oq 8OF O G a 0 a__ (0
=+ + -- V(,l2 (q)+ q, q,7) + Wi(q,qý) + "-W 2(q,q,7) (5)

at aý aq a0ý 9,q' a&q
where

p p11  pV

1 Pu F 1 puU + Gp 1 puV + •-•p
q= pv pvU,(+'$yp ;G=7 pvV'q)+ 1p

pe (P + PeU-GP (p + Pe)V - p
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0

1, bjuý + b2Vý

b2u + b3Vý

bjuuý + b2 (VUý + UVý) + b3VVý + b4Tý

0

12 cJuI + C2 V)71
V2  = 7 + C07

CJUU,7 + C2UV,7 + C3 VU,7 + C4?)) 71 + C5T,7

0

W, ClUý + C2Vý

11 ~ C3tL + COvý

ClUUý + C2VUý + C3UVe + COVve + C5Te

0

12 dju71 + d2V?7
= d2U?7 + d3vI7

djuu71 + d2(VU, 7 + UV, 7 ) + d3vv,71 + d4T,7
The Jacobian (J) of the transformation from (x, y) to (ý, ij), and the contravariant

velocities, Ui and V, are defined as

J = ~b -GY-(6)
x~y7 - x71 ye

U = 6+GU +.GV; V = qt+ Iu + I~vV ('7)

The coefficients bi, c1 , di (i=1,..,4; j=1,...,5) appearing in the viscous term of eqn. (5)

are defined as follows

b2= ItG +

3
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cl = -t (3.G•Xn + G1

C2 = - I (G~77Y - GrIX)

C3 =t (L4x?hi _ 2ýAlx)

C4 = -(ýXx +

C5 = -Cp ft (GxIx + 'yny) (9)

d1

Pr
di = tt4 2+ ,

The transformation metrics •t, •, •u, rn, •/ and tu appearing in the above equations

can be defined in terms of x•, x,, y•, and y,, which can be computed numerically by

applying a finite-difference formula to the body-conforming grid.

= (-x~y, + y~xd)J (11)

r d = (x+y• - y2x))J (12)

= =yJ (13)

d4 = C, (14)

•y= -xTJ (15)

y= x•J (16)

The Beam-Warming algorithm has been applied to the set of equations presented in

this section and the details of the algorithm are presented in the next section.
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3 NUMERICAL ALGORITHM

(STRUCTURED GRID)

Unsteady aerodynamic flow problems require the temporal accuracy along with

the spatial accuracy in the solution of the unsteady Navier-Stokes equations. Numerical

integration in time is performed to solve the governing equations and the transients are

of prime importance. It is also desirable to employ a time-marching, finite difference

algorithm that is unconditionally stable and therefore allows the use of a large time

increment, to solve the steady part of the problem.

Beam and Warming [2] have developed a fully implicit, unconditionally stable, non-

iterative finite-difference scheme for the solution of hyperbolic and mixed hyperbolic-

parabolic systems of partial difference equations. The Beam-Warming scheme em-

ploys a time-linearization procedure which eliminates the need for an iterative method

at each time step and utilizes the ADI technique, which results in the solution of

block-tridiagonal linear systems for each coordinate direction. It utilizes a structured

boundary-fitted grid. The Beam-warming algorithm in its "delta" formulation with

Trapezoidal implicit time differencing and centered spatial approximations is second or-

der accurate in time and space. This section presents the numerical implementation

of Beam-Warming algorithm. The boundary conditions and grid generation are also

discussed.

3.1 Beam-Warming Algorithm

The governing equations are solved in an inertial frame of reference. Trapezoidal

temporal discretization of the Navier-Stokes equations (eqn. (5)) gives

Aq n= IAt [(-AF + AV, + AV2 ) + (-A + AWT + AN1) +

At a(F +- V + V2) + (-G + W, + W12)] + O(At 3 ) (17)

12



where n indicates the temporal index and At is the time increment. Therefore, qf =

q(nAt) = q(t). Also,

Aq" = q+' Xqf; AF =F +'-Fn; AG-=G"+'-G"; AV 1 = V 1 +-V 1•
+- 1 n; AWJW = W l +1 2 2 (18)

AV2  V2 V2' 1 W1 = 2 W

The delta-form of Beam-Warming algorithm results in several advantages, including

a steady state solution independent of At and a more direct derivation of the factored

scheme. The flux-vectors are non-linear functions of q, and therefore a linearization

procedure which retains the same temporal accuracy of eqn. (17) has to be introduced

in order to develop a non-iterative algorithm. A linear equation with the same temporal

accuracy as eqn. (17) can be obtained if Taylor series expansion is used

Fn+1 = Fn + (OF n (qn+l - qfl) + O(At2 ) (19)

or, AFn = A Aqn + O(At 2 ) (20)

where

A = O- (Jacobian matrix) (21)aq

Similarly,

AGn = BnAqn + O(At 2) (22)

AV1 " = (P - R$)nAqn + •(RAq)n + O(At 2) (23)

A W~= (Q _ S.)"Aqn + -(SAq)n + o(At2 ) (24)

where

n - a(25)

p (26)
,9q

R - (27)Oak

Q = (28)
,9q

s= M 2  (29)
9q,,

13



The constituents of the Jacobian matrices are given in Appendix A.

A difficulty arises from the spatial cross-derivative terms o2(AV2)' and (AW 1)

If these terms were treated in the same manner as eqn (19), considerable difficulty will

be encountered in constructing an efficient spatially factored algorithm. In order to

facilitate the approximate factorization procedure it is appropriate and consistent to

treat the spatial cross-derivative terms mentioned above explicitly or eliminate them

altogether in eqn (17). Studies [2] on the effect of the cross derivative terms in the

algorithm have indicated that there is very little change if the spatial cross derivative

terms are dropped altogether.

Substitution of eqns. (20) to (24) into eqn. (17), and dropping the spatial cross-

derivative terms yields

I + (A - P + Rý)- + _(B - Q + S7) 2 Aq-

Zit !(-F + VY 2)n + +(-G + W1 + w2)j + o(At 3) (30)

where the notations of the form

(A- P + Re)n Aqn= g[(A - P + R,)Aq]n

and [+(B - Q + S,,)n Aqn = •-[(B - Q + S,)Aq]"n

have been used for convenience.

Equation (30) is linear, but still would result in a very large matrix inversion problem

when the spatial derivatives are replaced by finite-difference formulas. To make the

problem simple, the left hand side operator in eqn. (30) is factored as follows without

disrupting the formal accuracy of the algorithm.
I + At (A- P + R) 9I± [+ (B-Q + S)n _9 2S q

-TV- 2 1S77lU77

=At [(-F + V+ V2)n + F(G+ W1 + W2)l] + O(At 3) (31)

The factored scheme (eqn. (31)) is implemented in the following alternating direction

fashion

I+Ata (A-P+R)n _ 92n Aq1

[++ Wn]At [ 9(-F + V, 2)n + (-G+ + +W,) (32)
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I+jAt [ (B- Q + S7)n _ S Aqn= Aqc (33)

qn+l = qn + Aqn (34)

where Aqc is a dummy intermediate vector.

The spatial derivatives appearing in eqns. (32) and (33) have to be approximated

by appropriate finite difference quotients. Figure (3) shows a part of the transformed

uniform rectangular grid, employed for solving the equations, where

•=i-)A; <i<IL; (Ij=(-1)Aq; 1<_j <_Zi (35)

where the subscripts i and j refer to the ý and q direction respectively. For convenience

Aý and Ay are selected to be 1.0, and hence have been omitted in rest of the equations.

The transformed derivatives xý, x,, yý and y, are all computed using centered finite

differences at all the interior points, and one-sided, second-order accurate approximations

along the boundaries.

%max.

j+2

j+l

- i=il

j-1

j-2

i-2 i-1 i i+l i+2

0 ýmax.

Figure 3: Transformed plane.
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Centered finite difference discretization is applied to the spatial derivatives in eqns.

(32) and (33)

-A [j~i + e5ý(-P + Rý)j'1 - ,j1~}AS

-At [ý(F- V2 )i,j + /t,(G - W -)i5 -Vij - W2jn (36)

{I + At[pljBi,j + 8j(-Q + _Si-,]njAqn'j Aqi,j (37)

where the finite-difference operators used are

1
6ý j = Fji ii; I j (Fi+i,, - F~j

1
8,qFi,j -- F,j+. ½- El,j_½; ,Fi,j = 1 (Fi,j +l - Fjj-) (38)

2 2 2

Beam-Warming algorithm is implemented in a standard ADI sequence. Equation (36)

is solved first for the vector Aqc for all constant q lines (2 < j < JL - 1). This

step involves the solution of a block-tridiagonal linear system for each constant y7 line.

Similarly, eqn. (37) is solved next for the vector Aq' using the available values of the

intermediate vector Aqc for each constant ý line. The vector q is updated at time (n + 1)

using eqn. (34). The updated q vector gives the new flow variables at time step (n + 1).

3.2 Numerical Damping

A linear stability analysis of Beam-Warming algorithm indicates that the high fre-

quency components of the solution are not damped when central spatial finite differences

are employed [55]. Violation of stability condition produces an amplification of the var-

ious forms of error that are present in the numerical solution. These include truncation

errors (due to inexact differentials), round-off errors (due to truncated arithmetics), and

errors due to slightly inconsistent boundary conditions. The solution becomes stable

when some artificial dissipation is added to the algorithm. The artificial dissipation

term also provides smoothing for the capturing of embedded shocks. The present study

employs fourth order explicit and second order implicit dissipation terms [32]. The

fourth order explicit dissipation term removes the small wavelength oscillations (2Ax

oscillation) in the flowfield. The second order implicit dissipation term actually stabi-

lizes the system by increasing the diagonal dominance of the block tridiagonal matrix
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formed in the algorithm. The fourth-order explicit artificial dissipation term is appended

to the right hand side of eqn. (36). The implicit dissipation term is added to the left

hand side of eqn. (36). The addition of the artificial dissipation terms results in the

following algorithm :

{I± ~[MýAij + 6ý(-P + Rý -- 6 - wiJ ' ~]}A~ J'6~ 6,)q7

-At [y(F - V2 )i,j + p,(G - wl)i,j- 6YVj- 6,W 2 i,j] (39)

_62 Sj j- 16,2-,+na5 a,
{I + At[,ajBj, + 6j(-Q + S - -•, 7J]'}Aqij = ° (40)

where wi and we are the coefficients of implicit and explicit artificial dissipation terms,

respectively. Addition of the second-order implicit damping term extends the linear

stability bound of the fourth-order explicit damping term.

3.3 Geometric Conservation Law

The numerical simulation of unsteady flow past a moving airfoil involves the move-

ment of the computational grid. Maintenance of global conservation of mass, momentum,

and energy is an important part of numerical simulation. Use of boundary-conforming

coordinate transformations and the subsequent application of finite-difference formulas

to the moving boundaries or grids lead to grid-movement related errors in the solution.

To remove the grid-movement related errors, the Geometric Conservation Law (GCL) is

implemented in the algorithm [44]. Details of Geometric Conservation Law is presented

in Appendix B. The following term is added to the right hand side of the algorithm to

satisfy the global conservation (GCL).

GCL term(= At{ +() (y) q (41)

where

= (-Xtyn + yt,•)J; 71 = (XtY4 - YtX)J (42)
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3.4 Computational Grid

Nearly orthogonal boundary-fitted grids have been employed for the present study.

For numerical simulation of flow past an airfoil, three types of boundary-fitted grids

can be used : O-grid, C-grid and H-grid. In the present study, C-type grids have been

utilized for the simulation. An advantage of the C-grid is improved grid resolution

near the trailing edge. A schematic diagram of a C-grid has been shown in Fig. (4).

The grids employed in the present study have been generated by the hyperbolic grid

generation code developed by Kinsey and Barth [19]. The grid generation code needs the

distribution of points on the airfoil surface and wake as input and gives the coordinates

of the nodes of the C-grid as output. Figure (5) shows a part of the C-grid near the

airfoil.

uter oundary

oil surface

grid!.q• id cut

(wake region)

Figure 4: C-grid topology and computational boundaries.
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Figure 5: C-grid for NACA-0012 airfoil.

3.5 Boundary Conditions

Suitable boundary conditions have to be specified to completely define the problem.

The boundary conditions are based on the particular problem being considered. In the

present study, a C-grid has been employed. A C-grid has numerical boundaries at the

airfoil surface, the outer boundary (inflow and outflow), and C-grid cut in the wake

region. The boundary condition at all boundaries except at the C-grid cut in wake

region are imposed explicitly.

On the airfoil surface, the following adiabatic, no-slip condition is applied

U=UB (43)

0- = 0 (44)

The normal pressure gradient incorporates the effect of the airfoil motion.

op (5
1p9B -n (45)
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where UB and aB are the velocity and acceleration of the airfoil surface, respectively.

For the rotation of the airfoil about a fixed axis with a pitch rate ý, Us and dB can be

defined as

UB = 2 X (FB - iFo) (46)

aB=- X (irB-ro (rB - O) (7
dt

fo is the position vector of the point of rotation and -'B is the position vector of the

point on the airfoil where the velocity and the acceleration has to be determined.

At the inflow and outflow boundaries, a one-dimensional Method of Characteristics

boundary condition [45] is applied. The Method of Characteristics is described in de-

tail in Appendix C. A local coordinate system (7, V) is constructed orthogonal to the

outer boundary with 7 normal to and directed outward from the boundary and V di-

rected along the boundary. Assuming that the derivatives along the boundary can be

neglected (one-dimensional), the following characteristic equations and corresponding

characteristic variables have been found

2a d_
Characteristic equation 1 (C') : + -1 constant along -- = T + a (48)

2ad

Characteristic equation 2 (C2) U 2 - constant along - = W- a (49)
-Y - dt

Characteristic equation 3 (C3) s = constant along d = u (50)

dt2

Characteristic equation 4 (C4) = constant along -d- = u (51)

where s is the entropy, a is the speed of sound, and V and F are velocities in 7 and

directions respectively.

All of the Riemann variables corresponding to the characteristics moving out of the

computational domain have to be interpolated from the values available inside the do-

main. All other Riemann variables are set as boundary conditions. The outer boundary

is defined at a sufficiently large distance from the airfoil to insure accuracy of this bound-

ary condition (see section 4.2).
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(i) Transformed domain

a m - b c n d,
'trailing edge-'

wake region airfoil surface wake region

(ii) Wake region of computational domain

airfoil
surfacetalnede-------Ind

C aa

Figure 6: Computational and corresponding transformed domain of the region near the

trailing edge showing the usage of periodic condition at the C-grid cut.
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C-grid cut -

a m. b c
d n c trailing edge -

airfoil surface

wake region

Figure 7: Transformed domain during the y-sweep.

At the C-grid cut (wake region), the flow variables are solved implicitly by imposing

the periodicity condition. Figure (6) shows the region near the trailing edge and the

transformed domain. The transformed domain is obtained by unwrapping the compu-

tational grid from around the airfoil. In the transformed domain the value of the flow

variables at point 'a' are the same as at point 'd'. Similarly, values at 'm' and 'n' are

equal, and at 'b' and 'c' (trailing edge) are equal and so on. This periodicity condition

is used to solve for the flow variables implicitly at the C-grid cut. The Beam-Warming

algorithm is solved utilizing the ADI scheme. The transformed domain looks like Fig. (6

(i)) during the i-sweep. But during the y-sweep, the transformed domain looks like

fig. (7). This way the variables at the C-grid cut can be solved implicitly.
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4 GOVERNING EQUATIONS

(UNSTRUCTURED GRID)

The governing equations are the 2-D compressible laminar Navier-Stokes equa-

tions. For an arbitrary deformable control volume of volume V (per unit depth) and

surface OV, the nondimensional equations are

Qdxd + (Fdy -Gdx) = 0 (52)

where Q is the vector of dependent variables

Q = (p, pu, pv,'pe)T (53)

where p is the density, u and v are the velocity components in the x- and y-directions,

and e is the total energy per unit mass,
T

e (• = T + ih( 2 + V 2) (54)

where T is the static temperature and -y = cp/c, is the ratio of specific heats. The flow

variables are nondimensionalized using the dimensional reference quantities L (length),

po (density), ao, (speed of sound) and T, (static temperature). The superscript "T"

denotes the vector transpose. The flux vectors are

pU

F = puU + p - (55)
pvU - Tr,

peU + pu +,ix

PV

G = puV - ry (56)
pvV + p - ry

peV + pv + O3y

23



where

U=U-u,, V=v-v, (57)

where u8 and v8 are the x- and y-components of the velocity of the surface of the

control volume. The components of the viscous stress tensor are

7_X=M., ('4 u -2 Ov\

"- Re,,, 3 3

-Re,,.M(Ou OX)

=M - 2 Iu) (58)
-Re,,' 

3 ay 36 cx

where M, is the reference Mach number, Re,, is the reference Reynolds number, and

IL is the molecular viscosity normalized by a suitable reference value . The static

pressure p is normalized by pooa, and satisfies the Ideal Gas Equation

pT (59)

Furthermore,

Ox = qX- -- ,Xu - TXYV

P = % - -ryu - yv (60)

where the heat flux is

M.o 1 tOT
q= iRe. Pr (-y-1) Ox

M ". 1 T( 6
qY =-iRePr(y_) o (61)

where Pr is the Prandtl number.

It is convenient to decompose the flux vectors into their inviscid and viscous contri-

butions

pU

puU + p

pvU

peU + pu
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0

=~. -Txx (62)

and

pV

peV + pv

0

Gvi,8  = 'X (63)
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5 NUMERICAL ALGORITHM

(UNSTRUCTURED GRID)

5.1 Implicit Algorithm

An unstructured grid of triangles is employed (Fig. 8). A cell-centered storage archi-

tecture is assumed where i denotes the cell index. The cell-averaged value of the vector

of dependent variables Q is

Oi - Qdxdy (4
Vi , (64)

where Vi is the volume (per unit depth) of the cell. The governing equations (52) are

therefore

d

where Ci is the net flux across the cell faces
S= j (Fdy - Gdx) (66)

It is furthermore assumed that Vi is constant, although this restriction can be easily

relaxed.

A family of implicit algorithms for eqn. (65) is

{ ,8 AtOCjlAW} 1 At OC* •
I+1+ VoQJ1+ la Vi ,2aQ; 3

1 At + a AQO_ (67)

1+aVi +a

where At is the time increment, and

AQý = QOý+l - Q7 (68)

and Ej., denotes the summation over all cells constituting the numerical domain of

dependence ("star") in the application of eqn. (65) at cell i with the exception of the
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Figure 8: Unstructured grid of triangles

Table 1: Family of Implicit Algorithms

Type AccuracylI IIli

Euler O(At) 0 1

Trapezoidal O(At 2 ) 0

3-point O(At 2 ) j 1

cell i. Note that the Einstein summation convention is not employed in eqn. (67). The

family of algorithms and the associated temporal accuracy is indicated in Table 1.

The increments AQi for the N cells can be concatenated

AQ = (AQ 1, AQ2, .. , AQN)T (69)

based on an assumed ordering of the cells. Application of eqn. (67) to each cell, together

with suitable boundary conditions, yields the linear system of equations,

AAQ = R (70)

where A is the generalized Jacobian matrix, and RZ is the residual. The Jacobian A is
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sparse and banded.

5.2 Inviscid Fluxes

The contribution to Ci from the inviscid fluxes is obtained from flux difference split

method of Roe [34]
k=3

S(F -dy-G,, dx) = >•T-HAs (71)
Vi k=1

where the rotation matrix is

AX 0 0 0

T_'As = 0 Ay AX 0 (72)
0 -Ax Ay 0

0 0 0 As

where Ax and Ay are the x- and y- projections of side k of cell i and As 2  A 2 A +Ay 2 .

The flux vector is

pU

H= pui + p (73)

peU + pa

where

Ay AxU U - V-E-

Ax Ay
V U-+V-As As

U = uA•t-V X (74)

The flux vector H on a face k of a triangle is approximated by

H = 1 (H1 + H• + SIAI-1AR) (75)

The terms HI and H, denote the "left" and "right" reconstructed values of the flux

vector corresponding to the inside surface (i.e., inside the triangle) and outside surface
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of face k. These values are obtained by a spatially second-order accurate reconstruction

of Q using the cell-centered values [57]

Q = Qi + IVQ . r (76)

where Qi denotes the value of Q at the cell centroid, r-is the vector from the cell centroid

to the midpoint on the face, and I is a limiter function [57] which is determined by the

requirement that the reconstructed value of Q at the cell face is within the range of

values of Q for those cells employed in the reconstruction. The gradient VQ at the cell

centroid is obtained from Green's Theorem using the dual triangle abc whose vertices

are the centroids of the cells adjacent to cell i (Fig. 9). Thus,

Q = Qi +' f(AQa + AQb + AQc) (77)

where

AQa = (Qb + Qc)iia .fds
2Vabc

1
AQb = 2Vabc (Qa + Qc) nb . ds

1
AQ= 2V= (Qb + Qa) c i.ds (78)

Figure 9: Triangle used to construct VQ
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The additional term in eqn. (75) represents the contribution to the flux vector from

the waves originating within the adjacent cells and may be written,
j=4

A ll- ER = • l (79)
j=1

where JAjI are the absolute values of the eigenvalues

A3 = U+a

A4 = u- a (80)

The Roe-averaged variables are

U Nt0, + V__ __

o/_ l /_ ii

1 VT;+ V 1_
= - V/PJ±a + V u-;(2

i±2 = (_I--1)(ft"--4)

The eigenvectors are

01

V v

=2

e3 = ,64 =_ (82.)
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The coefficients are

&I = -Ap+ 1Apii
V

7-1 (2+=
&2 = { 7 2a(2 U )}Ap±+

(y-1) U-Apu + (y-Y1) aAp'-

Sa2

7-1 _Ape

3={42 =2 } " Ape
U + 2 7 }AP

&3~~ 17,( A

&4 = + +AP p-=Apu (83)a a

where, for example, Apii = piiz - Pi!r.

An entropy cut-off is employed to eliminate unphysical expansion shocks which can

occur when one or more of the eigenvalues Aj are zero. In eqn. (79), Ajl is replaced by

AI where

J if Jl >8
A, (AJ12 + 82)/28 if I•J~ <8 (84)

where 8 is a small quantity (typically, 8 < 0.1).

The individual elements of the additional flux term SlAI-'AR are given in Ap-

pendix D.

5.3 Viscous Fluxes

The contribution to Ci from the viscous fluxes and heat transfer on face k is obtained

from application of Gauss' Theorem [22] to the quadrilateral defined by the cell centroids

of the cells adjacent to face k and the two nodes defining the endpoints (Fig. 10). For

any function f(x, y),
Of 1 o fndA (85)
Ox V v
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where V and OV are the volume and surface of the quadrilateral abcd, respectively, and

n., is the component of the outwards normal in the x-direction. A similar equation is

obtained for Of/Oy. The molecular viscosity is evaluated at the midpoint of surface k

using the formula

I= (Ab + tId) (86)

where M•b and I'd represent the molecular viscosity evaluated at nodes b and d, respec-

tively.

The values of Q at the nodes are needed only for the viscous terms and are obtained

by second-order interpolation of Q from those cells sharing the node [33]

Qj = E wQI/ E w (87)
cells cells

where Q, denotes the Q at node j, Qj denotes Q at the centroid of cell i which shares

the node j, the sum is over all cells sharing the node (xj, yj), and wi are dimensionless

weights

w= 1 + Ax (xi - xj) + A, (yi - yj) (88)

where

Ay = (IzyRz - Ry)/(I=,I,-ix)

R,= E •(Xi- i),P y •(y.- yj)
cells cells

I(X =- +)2, = (yi -yj)2

cells cells

1-Y= Z(Xi- X)(yi-yj) (89)
cells

5.4 Jacobian of Inviscid Terms

The exact expression for the individual Jacobians of the inviscid terms in eqn. (67)

is

acQ k=3 OQaff~j,..=a:E JAI + BI + C1- •j +

k=3 aQ •
E_, {Ar + B, - C1 Qj

k=1
(90)
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b

Figure 10: Quadrilateral employed for determination of viscous fluxes and heat transfer

where

A1 = 1T-1 OHlAs
A, = 12 T-1 al-lr A.~

2 9Q,
1T 1OH,"S

A, =2 -- Q-.sBI =-O ( QI - Qr )
OQI

Br = DQC ( QI - Qr )

C = !T-'SIAIS-'TA8 (91)

Complete details of the exact inviscid Jacobian are provided in Appendix D.

5.5 Jacobian of Viscous Terms

The exact expression for the individual Jacobians of the viscous terms in eqn. (67) is

OCi E ON (92)~93tB= Ic1 O9Q3OQj ýVis k=1l~

where

0

"-rxx' + Tr~yAX (3N = .. A ,.A (93)
TzrYAY + -TYYAX

-rAy - rAx
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Complete details of the exact viscous Jacobian are provided in Appendix D.

5.6 Boundary Conditions

Boundary conditions are incorporated implicitly. At a supersonic inflow boundary,

Q is specified fully. At a solid boundary, the velocity is set equal to zero, the surface

temperature or heat flux (e.g., adiabatic) is specified, and the normal derivative of the

static pressure is set to zero. On a symmetry boundary, the normal component of the

velocity is set to zero, and the normal gradients of the remaining flow variables are set

to zero. At a supersonic outflow boundary, the flow variables are extrapolated linearly

from the interior.

5.7 Solution of Linear System

The linear system eqn. (70) is solved at each time step using the BiCGSTAB algorithm

of Van der Vorst [46]. Thealgorithm is a conjugate gradient type iterative method.
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6 CODE VALIDATION (STRUCTURED GRID)

A two-dimensional, laminar, compressible Navier-Stokes solver has been devel-

oped employing the Beam-Warming algorithm described in section 3. A variety of two-

dimensional test computations were performed to establish the accuracy of the solver.

The solver was validated through application to the following computations

(a) Flat plate boundary layer.

(b) Steady state laminar flow past a NACA-0012 airfoil.

(c) Unsteady laminar flow past a pitching NACA-0015 airfoil.

6.1 Flat Plate Boundary Layer

The supersonic laminar boundary layer on a flat plate provides a test of the accuracy

of the solver for viscous flows by comparison with an exact solution of the boundary

layer equations under the conditions Pr = 1, and 1L = T. The solver was employed to

perform a boundary layer computation over a flat plate. The freestream Mach number

M,, was 2.0 and Reynolds number based on the length of the plate (ReL) was selected

to be 10'.

The computational configuration is shown in Fig. (11). The inflow is a uniform

steady flow and extrapolation was used to find the flow variables at the outflow. The

Method of Characteristics was used at the top boundary. At the lower boundary, in

front of the plate leading edge, a symmetry boundary condition was used for the flow

variables in the qj-direction (i.e., -2( ) = 0). At the plate boundary, a no-slip, adiabatic

boundary condition was used for the velocity and temperature, respectively. A linear

viscosity law was employed with Pr = 1.0.

A__ T (94)
it. T.

where the subscript oo denotes the freestream values.
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top boundary

eak shock

inflow outflow

boundary layer _

leading edge flat plate

Figure 11: Schematic of the computational domain for boundary layer over a flat plate.

The grid employed Ný = 60 and N,, = 75 points in the streamwise (ý) and normal

(yi) directions, respectively. The number of grid points within the boundary layer was

NBL = 54 at the end of the flat plate.

The computed velocity and static temperature profiles are compared with the avail-

able analytical profiles [56] in Figures (12) and (13) at x = 0.8L. The ordinate is the

transformed distance in 7 direction:

,,+ = Re.fo p dy (95)
opoc x

The velocity is normalized by the freestream velocity, U,, and the static temperature

is normalized by the freestream static temperature, T,,. The agreement between the

computation and the theory is excellent. The computed velocity and static temperature

profiles agreed with the analytical profiles to within 1.0%.

A computation was also performed with the grid at an angle to the horizontal.

The results showed similar agreement with the theory as in the previous case. This

computation ascertained the accuracy of the grid transformation from (x, y) coordinates

to (ý, 71) coordinates.
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Figure 12: Velocity profile in the boundary layer over a flat plate (ReL = 10', M, = 2.0).
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Figure 13: Static temperature profile in the boundary layer over a flat plate (ReL = 10',

M.. = 2.0).

37



6.2 Steady Flow Past a Stationary NACA-0012 Airfoil

The viscous subsonic flow past an airfoil at a fixed angle provides a realistic test of

the accuracy of the numerical algorithm by comparison with previous numerical com-

putations.

A series of computations were performed for a stationary NACA-0012 airfoil at an

angle of attack, a = 00, Reynolds number based on the chord Re, = 5 x 10', and

freestream Mach number M, = 0.2. Sutherland's Law was employed, and Pr = 0.73. A

C-grid was employed with Ný = 303 and N, = 101, where ý is the curvilinear coordinate

in the direction of the "C", and q is the coordinate approximately orthogonal to q.

The average normal distance of the first row of mesh points adjacent to the airfoil was

Anaver , 5.0 x 10- 4 c, and 25 grid points were contained within the boundary layer at

mid-chord. The grid spacing tangential to the airfoil surface varied from As = 4.3 X 10- 4c

to 1.99 X 10- 2 c, with the finest grid employed near the leading and trailing edges.

The results were compared with previous computations by Beran [3] and the results

utilizing the present unstructured grid algorithm [20] at the same flow field conditions,

and Mehta [26] at the same Reynolds number for incompressible flow. Table 2 presents

the computed drag coefficient of the present study and the three other computations.

Figure 14 shows the comparison of the computed surface pressure coefficient with Be-

ran's results. The computed drag coefficient and surface pressure coefficient show close

agreement with the other computations.

Table 2: Computed Drag Coefficient (Stationary NACA-0012 Airfoil), Re, = 5 x 10',

M. = 0.2, a = 0'.

Reference ( drag coefficient (Cd)

Present study (Structured grid) 0.0544

Beran 0.0530

Present study (Unstructured grid) 0.0547

Mehta 0.0534
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Figure 14: Pressure coefficient on the surface of a stationary NACA-0012 airfoil at a = 00

(Re, = 5 X 103, M• = 0.2).

The Beam-Warming algorithm has artificial damping terms. It is important to study

the effect of the damping coefficients on the computations. A number of computations

were performed to study the sensitivity of the computed flowfield to the magnitude of the

explicit damping coefficient, w,. The steady solutions do not depend on the magnitude of

the implicit dissipation terms because at steady state the right hand side of equations 39

and 40 are zero and the implicit dissipation term does not have any effect on the final

solution. The computed flowfield was found to be insensitive to the magnitude of the

explicit damping coefficient we provided we < 0.01. Figure (15) shows the values of

the drag coefficient and leading edge pressure coefficient for different values of explicit

damping coefficient.

The effect of the location of the outer boundary distance from the airfoil on the com-

puted flowfield was also studied. Figure (16) shows that the computed drag coefficient

and leading edge pressure coefficient are insensitive to the location of the outer boundary

provided the distance from the airfoil exceeds 18c.

39



0.0575 1.060

drag coefficient 1.055
. pressure coefficient

0.0565

1.050

CD
1.045Z " 0.0555 CD

C V

1.0408�DC

O• 0.0545 0,D 1.035 (D

*0 CD

1.030
0.0535

1.025

0.0525 1.020
0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011

explicit damping coefficient (os)

Figure 15: Effect of explicit damping coefficient, w,, on the drag coefficient and leading

edge pressure coefficient for a stationary NACA-0012 airfoil at a = 0' (Re, = 5 x 10',

M. = 0.2).

6.3 Unsteady Flow Past a Pitching NACA-0015 Airfoil

The subsonic viscous unsteady flow past a pitching airfoil provides a test of the

temporal and spatial accuracy of the numerical algorithm through comparison with

previous numerical simulations.

A set of computations were performed to study the flow past an NACA-0015 airfoil

pitching about its quarter chord axis at Re, = 10', Mo = 0.2, and non-dimensional

pitch rate Q+ = 0.2. The pitching motion was defined by:

+(t) = + 1-e{6o}) (96)

where to is the time at which the non-dimensional pitch rate Q+ has reached 99% of its

40



0.0575 1.0600

drag coefficient

0.0565 - pressure coefficient 1.0550

1.0500 D

0.0555 CD

D '

1.0450 WC
U C
0D

0CD1.0400 '-"-"

0.0535
1.0350

0.0525 . 1.0300
0 5 10 15 20 25 30 35

outer boundary distance in chord lengths

Figure 16: Effect of the location of the outer boundary distance from the airfoil on the

drag coefficient and leading edge pressure coefficient for a stationary NACA-0012 airfoil

at a =0 (Re,= 5 X 103, M = 0.2).

asymptotic value, Q+. The non-dimensional pitch rate is defined as

Q+ = (97)

U.0

where Q is the pitching rate in rad/sec, c is the chord length and U0, is the freestream

velocity. The functional form of the non-dimensional pitch rate provides a smooth

acceleration of the airfoil to its asymptotic value during an effective time interval to =

0.5c/U0 0 which corresponds to 4.57' of pitch. The functional form of the pitching motion

also removes the infinite acceleration faced at the start of the pitching if a constant

value of Q+ is applied throughout the motion. The flow condition and expression for

the pitching motion correspond to the previous computation by Visbal [49].

A C-grid was employed with Ný = 332 and N. = 85. The average normal distance

of the first row of mesh points adjacent to the airfoil was Anave, = 1.0 X 10-c, and 33

grid points were contained within the boundary layer at mid-chord. The grid spacing
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tangential to the airfoil surface varied from As = 4.59 x 10- 3 c to 1.47 x 10- 2 c, with the

finest grid employed near the leading and trailing edges.

3.0

2.5 present studyo - -2. --0 Visbal's O-grid code / ----
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= dra ~fiin
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0 5 10 15 20 25 30

angle of attack (in degrees)

Figure 17: Lift, drag and moment coefficients for a pitching NACA-0015 airfoil (Re,

104, M• = 0.2, Q+ = 0.2).

The computed flowfields were found to be in close agreement with the previous

computation by Visbal [49], who used an O-grid. Figure (17) shows the comparison of

the computed lift coefficient C1, drag coefficient Cd, and moment coefficient CM with the

previous results of Visbal for 0 < a < 250, where a is the angle of attack of the airfoil.

Detailed examination of the flow variables showed similar close agreement.
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7 CODE VALIDATION

(UNSTRUCTURED GRID)

7.1 Riemann Shock Tube

The Riemann Shock Tube Problem provides a test of the temporal and spatial ac-

curacy of the numerical algorithm for inviscid flows through comparison with an exact

solution [21]. A total of four rows of 200 triangular cells each were employed with cell

spacing Ax = Ay = 1.0. The pressure ratio P4/Pi = 10, where p4 and p, are the static

pressure in the driver and driven sections, respectively. The static temperature ratio

T4/T, = 1.0. The diaphragm is located in the middle of the computational domain. The

computations employed trapezoidal time differencing with a Courant number of 2. The

entropy cut-off 6 = 0.1.

Results for the static pressure, static temperature and velocity are shown in Figs. 18

through 20 at t = 18.4. The computed profiles are in close agreement with the exact

result [21].

7.2 Flat Plate Boundary Layer

The supersonic laminar boundary layer on a flat plate provides a test of the spatial

accuracy of the numerical algorithm for viscous flows through comparison with an exact

solution of the boundary layer equations under the conditions Pr = 1 and F. = T [56].

A total of 7802 triangular cells were utilized comprising 47 rows of 166 cells each. The

streamwise cell length Ax = 1.28 x 10'. The transverse cell length Ay varied from

1.0065 x 10' adjacent to the flat plate to 2.07 x 10-2 at the upper boundary of the

computational domain. The Reynolds number Re, based on plate length was 3.95 x 10'.

The computed and theoretical velocity and static temperature profiles are displayed
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Figure 19: Comparison of static temperature in a shock tube
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Figure 20: Comparison of velocity in a shock tube

in Figs. 21 and 22, respectively. The ordinate is the transformed dimensionless distance

Re0 0  Y= Jpdy (98)

The velocity is normalized by the freestream speed of sound (and hence uo Mo

and the static temperature is normalized by the freestream static temperature. The

agreement between the computation and theory is excellent. The velocity profile agrees

with the theoretical result to within 1.5%. Similar close agreement is observed with the

static temperature profile. In particular, the computed wall temperature agrees with

the theoretical value (T,, = 1.80) within 0.5%.

7.3 NACA-0012 Airfoil

The subsonic viscous flow past an NACA-0012 airfoil at a = 0 deg was computed and

compared with previous numerical solutions. A total of 25,534 cells were utilized. The

cell nodes were generated using the GRAPE program of Sorenson [42] and the Delaunay

triangulation obtained using the UNSTRUCT program of Merriam [27]. The nodes adja-

cent to the airfoil surface were typically at a normal distance of 2.0 x 10-' where c is
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the airfoil chord. The freestream Mach number M,, = 0.2 and the Reynolds Number

Re, = 5 x 10' based on the chord.

The computed drag coefficient Cd is compared with the structured grid results, results

due to Beran [3], and the results of Mehta [26] (Table 2). The flow conditions of all

computations are identical, except the Mach number was zero for the computations by

Mehta. The computed values of Cd are in close agreement.

1.00

- Presenr
0.50 Choudhud

- Beran
C..

0.00

-0.50 .. ,.
0.00 0.25 0.50 0.75 1.00

XIC

Figure 23: Comparison of surface pressure coefficient on a NACA-0012 airfoil

The computed surface pressure is shown in Fig. 23 for the present algorithm, together

with the results of structured grid computation and results of Beran [3] which both

employed the Beam-Warming algorithm. The agreement is excellent. The computed

leading edge pressure coefficient cp agrees with the exact (inviscid) value (c% = 1.01)

within 2%.
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8 DEFINITION OF PROBLEM

The research problem is described in the present section. A brief description of

the critical point theory follows the definition of the problem. The critical point theory

has been applied to the computation of unsteady separation on a pitching airfoil to

better understand the formation and development of the structures in the flowfield.

8.1 Problem Description

The focus of the research is understanding of the effects of compressibility, pitch

rate and Reynolds number on the incipient boundary layer separation for viscous flow

past a NACA-0012 airfoil pitching about the quarter chord axis. The flow and C-grid

configurations are shown in Figure (24). The pitching motion is defined by equation

(96). The pitching motion was initiated after the flowfield had been fully established at

a = 00. The initial flowfield displayed a slight unsteadiness due to the periodic vortex

shedding at the trailing edge. All computations were initiated when the lift coefficient

was zero and the results presented herein are insensitive to the relative phase of the

initiation of the pitching motion.

An extensive grid refinement study was conducted for each of the cases studied uti-

lizing the structured grid algorithm to establish the accuracy of the solutions. Complete

details of the grids employed for the different cases are given in Table 3. A total of 7

cases were studied (figure 2). The accuracy of the computations were assessed for each

case based on the comparison of the results for two grids with successive refinement. A

non-dimensional time step (dt+ = tUc,/c) of 1.0 x 10- was employed for all the seven

cases studied utilizing the structured grid algorithm. Computations conducted with a

time step of 0.5 x 10-3 demonstrated that the computed results were insensitive to the

selected time step.

One computation was performed for Case 1 using the unstructured grid algorithm

for comparison with the structured grid solutions. Details of the grid are presented in
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Table 3. Based on a temporal refinement study, a non-dimensional time step (dt+=

tU•/c) of 2.6 x 10.5 was selected for the computation.

The seven cases were chosen to study and understand the effects of compressibility,

pitch rate and Reynolds number on the incipient separation process. In cases 1 through

3 and 4 through 6, the pitch rate is decreased while keeping the Reynolds and Mach

numbers constant. Similarly in cases 1 and 4, 2 and 5, 3 and 6, the Mach number is

increased from 0.2 to 0.5 while the Reynolds number and pitch rate are fixed. Cases 4

and 7 are computed at different Reynolds number while the Mach number and the pitch

rate are fixed. These computations help in gaining an insight into several important

trends related to the change in Mach number, Reynolds number or the pitch rate.

8.2 Critical Point Theory

The understanding of unsteady separation for a pitching airfoil is greatly facilitated

by visualization of the instantaneous streamlinesn. There are several possible frames of

3Of course, the instantaneous streamlines are not identical to the particle pathlines or streaklines

since the flow is unsteady.
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Table 3: Details of the grids

Structured Grid

Case Reynolds Mach Pitch Grid Ný N7 An/c As/c NBL

number number number rate x104 x103

1 10,000 0.2 0.2 a 637 181 1.0 1.69 64

b 1011 181 1.0 0.84 64

c 637 325 0.5 1.69 112

2 10,000 0.2 0.1 a 1037 181 1.0 1.025 58

b 2073 361 0.5 0.511 115

3 10,000 0.2 0.05 a 1037 181 1.0 1.025 58

b 2073 361 0.5 0.511 115

4 10,000 0.5 0.2 a 1037 181 1.0 1.025 58

b 2073 361 0.5 0.511 115

5 10,000 0.5 0.1 a 1037 181 1.0 1.025 58

b 2073 361 0.5 0.511 115

6 10,000 0.5 0.05 a 2073 159 2.0 0.509 44

b 4145 317 1.0 0.252 88

7 100,000 0.5 0.2 a 2073 337 0.05 0.509 124

b 4145 673 0.025 0.252 247

Unstructured Grid ]
Case Reynolds Mach Pitch Grid icell jnode An/c As/c NBL

number number number rate x10 4  x10 3

1 10,000 0.2 0.2 a 130,238115,299 10.0 3.5 14

LEGEND:

Ný = Number of points in i-direction

N,7 = Number of points in q-direction

An = Average normal distance of points next to airfoil

As = Minimum tangential distance of points on airfoil

NBL = Points in BL measured normal to airfoil surface at mid-chord for a = 0'

icell = Number of triangles

jnode = Number of nodes
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reference including 1) the inertial (laboratory) frame of reference wherein the freestream

velocity is fixed and the velocity at the airfoil surface is generally nonzero, and 2) the

rotating frame of reference (attached to the airfoil) wherein the freestream velocity is

unsteady and the velocity at the airfoil surface is zero. The rotating frame possesses

the seemingly intuitive advantage for physical interpretation of "forward" and "reverse"

flow relative to the airfoil. Since the velocity is zero at the airfoil surface in the rotating

frame of reference, the fluid immediately adjacent to a point on the airfoil surface is

either instantaneously moving "forward" (i.e., towards the trailing edge) or "reverse"

(i.e., towards the leading edge).

The instantaneous streamlines in the rotating frame of reference were selected for

analysis. The components of the velocity (u',v') in the rotating frame of reference (x',y')

are related to the components of the velocity (u,v) in the inertial frame by (Fig. (24))

U' = +Qy'+ucos0+vsin0

v' = -fQx'-usinO+vcos0 (99)

Note that the pitch rate 0 is negative for clockwise (pitch up) rotation. The instanta-

neous streamlines are

dx' U / (X I y t1
dr
dy' _dl- v'(x', y', t) (100)d~r

where r is the parametric length along the instantaneous streamlines at a particular

time.

Equation (100) is an autonomous system of ordinary differential equations which may

possess critical points, i.e., loci where u' = v' = 0. The behavior of the equations in the

vicinity of these critical points is well known as described, for example, in Kaplan [17]

and Pontryagin [31]. Recent papers by Perry and Chong [30] and Chong et al [10] have

elucidated further details regarding fluid motions near critical points. The critical points

may be classified on the basis of the Jacobian J and dilatation A where
Ou' Ov' Ou' Ov'

j 7 (101)

9U' v'Oy (102)Ou' Dy'
"1 + ay(O25

51



The taxonomy of critical points for two-dimensional flow is described in Fig. (25).

For J < 0, the topology is a saddle, with the relative orientation of the asymptotes

determined by the value of A. For J > 0 the principal topologies are nodes and foci,

with the latter obtained for J > A2/4. The patterns are stable (i.e., the instantaneous

fluid motion is towards the critical point) or unstable (i.e., the instantaneous fluid motion

is away from the critical point) based on the sign of A. Positive A leads to unstable

patterns, while negative values of A lead to stable patterns. In those instances where

A = 0, the topology changes from a saddle (for J < 0), to a simple shear (for J = 0)

and to a center (for J > 0). In 2-D incompressible flows, the dilatation (A) is zero and

only saddles and centers can occur. Centers appear in the region of positive Jacobian

and saddles in the region of negative Jacobian.
y -- J {(u,v)/(x,y)}

2
x

Center

Unstable foci 
Sa /

Emergence

of center enter (Ellipse)
Unstable nodes Stable nodes

Pure Shear

x = -div.V

Saddle Saddle
j,•,• Saddle

Emergence '' •---

of saddle

Figure 25: Classification of critical points.

The appearances of the critical points is closely related to the appearance of the

recirculating regions and the development of the flow field. In the following section,

critical point theory is applied to the computation of unsteady separation on a pitching

airfoil.
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9 RESULTS

The flow structures observed in the seven cases studied are described in the present

section. A linear stability analysis was also conducted as a part of the research program

to understand the reason for the formation of the recirculating regions in the flow field.

The stability analysis has been presented at the end of this section.

The instantaneous streamlines obtained from the computations are presented in the

following subsections. The results presented here correspond to Grid b for each of the

cases (except for the unstructured grid results, which are for Grid a). The instanta-

neous streamlines are plotted based on a reference frame attached to the airfoil. (The

instantaneous streamlines have not been plotted to scale in order to show all flow de-

tails.) The origin of the coordinate axis is the quarter chord point. The airfoil-attached

reference frame allows an unambiguous definition of forward and reversed flow within a

thin unseparated boundary layer, since the velocity of the fluid at the airfoil surface is

zero. Forward flow is defined as fluid moving toward the trailing edge, and reversed flow

indicates fluid moving toward the leading edge.

9.1 Case 1 : Re, = 104, M, = 0.2, Q+ = 0.2 (Structured Grid)

The instantaneous streamlines at a = 14.50, 19.50, and 22.50 are shown in figures

26 through 28. At a = 14.50, the flow on the upper surface in the vicinity of the

leading edge has a thin reversed flow region extending to the 7% chord position. A

clockwise-rotating primary recirculating region can be seen near the leading edge on

the upper surface at a = 19.50. The counterclockwise-rotating secondary recirculating

region appears beneath the primary recirculating region and a clockwise-rotating tertiary

recirculating region between the leading edge and the primary recirculating region at

a = 22.50. The emergence of the primary recirculating region is traced to the appearance

of a pair of critical points (which are defined as points in the velocity field where u=v=O

in a reference frame attached to the airfoil) within the flowfield at a = 14.990 at the
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Figure 26: Instantaneous streamlines at a = 14.50 (Re, = 104, M o = 0.2, Q+ 0.2;

Case 1)

18% chord location and a distance 2.5 x 10- 3 c above the airfoil surface. In figure 29,

the close-up of the instantaneous streamlines at a = 150 show the structure of the

primary recirculating region just after its birth. The instantaneous streamlines in the

region between forward and reversed flow are in the shape of a "C". As a increases, one

of the "C" shaped instantaneous streamlines collapses at a single point. The critical

point initially appears as a single point corresponding to a pure shear, i.e., J = A = 0

(Fig. 25). It immediately bifurcates into two critical points (a center and a saddle)

which move apart and the center gives rise to the primary recirculating region. The

primary and secondary recirculating regions interact with each other to eject the fluid

close to the airfoil surface in a direction approximately normal to the wall, thus leading

to boundary layer separation (Peridier et al [28, 29]). The primary recirculating region

eventually detaches from the airfoil surface and becomes the dynamic stall vortex. The

developments near the leading edge are relatively isolated from the developments on the

aft portion of the airfoil through a region of attached flow (figure 30).
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Figure 29: Instantaneous streamlines at a = 150 (Re, = 10', Mo = 0.2, + = 0.2; Case
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Figure 30: Instantaneous streamlines over the entire airfoil at a = 22.50 (Re, = 10',

Mw = 0.2, Q+ = 0.2; Case 1)
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Figure 31: Instantaneous streamlines at a = 14.50 employing unstructured grid (Re, =

104, M,, = 0.2, n+ = 0.2; Case 1)

9.2 Case 1 : Re, = 104, M, = 0.2, Q+ = 0.2 (Unstructured Grid)

Instantaneous streamlines obtained using the unstructured grid code are shown in

Figs. 31 to 35 at a = 14.5', 16.5', 19.50, 21.00 and 22.5'. Overall, there is close agree-

ment between the structured and unstructured grid computations. The primary recir-

culating region is evident in both cases at a = 16.50, and has grown at a = 19.50. The

secondary and tertiary recirculating regions at a = 22.5' are quantitatively very similar

in both computations. The close comparison between the separate computations using

two fundamentally different algorithms establishes the credibility of the results.
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Figure 32: Instantaneous streamlines at a = 16.50 employing unstructured grid (Re,

104 ~ 0.2, Q+ 0.2; Case 1)
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Figure 33: Instantaneous streamldines at a = 19.50 employing unstructured grid (Re,

104 , M,, = 0.2, Q+ = 0.2; Case 1)
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Figure 34: Instantaneous streamlines at a =21.00 employing unstructured grid (Re,

104, M, = 0.2, Q+ = 0.2; Case 1)
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Figure 35: Instantaneous streamlines at a = 22.50 employing unstructured grid (Re,

104, M""= 0.2, Q+= 0.2; Case 1)
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9.3 Case 2 : Re, = 104 Mo = 0.2, Q+ = 0.1

The instantaneous streamlines are shown in figures 36 through 39 for a = 13.50, 150,

170 and 180, respectively. At a = 13.5', there is reversed flow on the upper surface

extending almost to the leading edge. However, there are no recirculating regions in

the area shown. (Flow near the trailing edge shows complex separation behavior.) The

clockwise rotating primary recirculating region forms at a = 14.29' at 27% chord and

a distance 1.25 x 10- 2 c above the wall. At a = 150, the primary recirculating region

is shown. At a = 17', a counterclockwise rotating secondary recirculating region forms

below the primary recirculating region at the 16% chord position. The primary recircu-

lating region has grown normal to the airfoil surface and also moved toward the leading

edge. The instantaneous streamlines are shown over the entire airfoil at a = 180 in

figure 39, which shows that the developments in the leading edge region is relatively

isolated from developments in the trailing edge region. A clockwise rotating tertiary

recirculating region develops on top of the secondary recirculating region in between the

leading edge and the primary recirculating region. The flow structures are similar to

Case 1 (Q+ = 0.2). However, the primary recirculating region appears at a smaller angle

as compared to Case 1. Also, the structures form farther away from the leading edge

and toward the trailing edge on the upper surface in Case 2.
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Figure 36: Instantaneous streamlines at a =13.5' (Re, 10'O, M... 0.2, Q = 0.1;

Case 2)
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Figure 37: Instantaneous streamlines at a =15' (Re, 10'~, M,, = 0.2, Q+~ 0.1; Case

2)

61



0.25

0.20

0.15

0.10

0.05
S~primary recirculating region

0.00 secondary recirculating region

-0.05

-0.10

-0.15 . . . . .

-0.2 -0.1 0.0 0.1 0.2

Figure 38: Instantaneous streamlines at a = 170 (Rec =10, M,, 0.2, + = 0.1; Case

2)
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Figure 39: Instantaneous streamlines over the entire airfoil at a = 180 (Rec 10',

M,, = 0.2, Q+ = 0.1; Case 2)
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9.4 Case 3 : Re, = 104, M, = 0.2, Q+ = 0.05

The instantaneous streamlines over the entire airfoil are shown in figures 40 through

43 for a = 90, 10.50, 120, and 13.50, respectively. At a = 90, the reversed flow extends

over most of the airfoil upper surface and a trailing edge recirculating region can be seen.

The reversed flow extends over the entire airfoil upper surface at a = 10.50. The trailing

edge recirculating region stretches along the airfoil upper surface and breaks down into

multiple recirculating regions at a = 120 extending over the entire airfoil top surface.

Unlike the Cases 1 and 2 (which are at higher pitch rate), the flow developments near

the trailing edge are not isolated from the developments near the leading edge. Also,

the recirculating regions appear far from the wall (average distance of 4.0 x 10- 2c). The

instantaneous streamlines at a = 13.50 demonstrate the increase in size of the multiple

recirculating regions in the transverse direction with increase in the angle of attack,

giving rise to breakdown of the entire upper surface boundary layer. The development

of the flow structure which gives rise to the dynamic stall vortex is not isolated in the

leading edge only and appears over the entire airfoil upper surface, which is different

from Cases 1 and 2.
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Figure 40: Instantaneous streamlines at a =9.0' (Re =IO4, M_ =0.2, Q =0.05;

Case 3)

0.3

0.2

0.1

0.0

-0.1

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 41: Instantaneous streamlines at a = 10.50 (Re, = 104, M. = 0.2, ý2 = 0.05;

Case 3)
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Figure 42: Instantaneous streamlines at a = 120 (Re, 10', M. = 0.2, Q = 0.05;

Case 3)
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Figure 43: Instantaneous streamlines at a = 13.50 (Re, = 104, M, = 0.2, Q+ = 0.05;

Case 3)
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Figure 44: Instantaneous streamlines at a = 180 (Re, = 10', M,, = 0.5, Q+ 0.2; Case

4)

9.5 Case 4 : Re, = 104 , M, = 0.5, Q,+ = 0.2

The instantaneous streamlines over the front 50% of the airfoil are shown in figures

44 through 47 for a = 180, 19.50, 22.5', and 25.50, respectively. The reversed flow

region observed over the airfoil upper surface at a = 180 is much thicker as compared

to the reversed flow region at Mo, = 0.2 (Cases 1 and 2). At a = 19.50, the primary

recirculating region has formed. In particular, the primary recirculating region appears

first at a = 18.80 at 30% chord position and a distance 1.7 x 10- 2 c from the airfoil surface.

The secondary recirculating region can be seen at a = 22.50. The secondary recirculating

region develops below the primary recirculating region which expands normal to airfoil

surface. At a = 25.50, the tertiary recirculating region appears above the secondary

recirculating region and the primary recirculating region is pushed farther from the

airfoil surface. In this case, the vortical structures have larger length scale as compared

to Case 1 or Case 2. Again, the development of the flow field is very similar to Cases 1

and 2, but with a delay.
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Figure 45: Instantaneous streamlines at a 19.50 (Re, = 104, M" = 0.5, + = 0.2;

Case 4)
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Figure 46: Instantaneous streamlines at a = 22.50 (Re, = 104, M. = 0.5, + = 0.2;

Case 4)
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Figure 47: Instantaneous streamlines at a 25.50 (Re, = 10', M. = 0.5, Q+ 0.2;

Case 4)

9.6 Case 5 : Re, = 104, M "= 0.5, Q+ = 0.1

The instantaneous streamlines at a 150, 16.50, 180, and 19.50 over the leading 70%

of the airfoil are shown in figures 48 through 51. At a = 15', a thick reversed flow

region is observed over the entire upper surface. The primary recirculating originates at

a = 15.650 at 44% chord position and a distance 3.8 X 10-2c above the airfoil surface.

The primary recirculating region is observed to have developed at a = 16.50, and the

secondary recirculating region forms below the primary recirculating region (a = 180).

At a = 19.50, the tertiary recirculating region can be seen. The secondary recirculating

region separates the primary recirculating region from the tertiary recirculating region.

The separation process is again observed to be similar to Cases 1, 2, and 4. The principal

differences are that the structures form farther away from the leading edge compared

to the other three cases, and the length scale associated with the flow structures is

substantially greater.
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Figure 48: Instantaneous streamlines at a = 15' (Re, = 10', Moo = 0.5, Q+ = 0.1; Case
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Figure 49: Instantaneous streamlines at a = 16.50 (Re, = 104, Mo = 0.5, f2+ -01;

Case 5)
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Figure 50: Instantaneous streamlines at a = 180 (Rec = 104, Mý = 0.5, + 0.1; Case

5)
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Figure 51: Instantaneous streamlines at a = 19.50 (Rec = , 04, Mo = 0.5, + = 0.1;

Case 5)
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Figure 52: Instantaneous streamlines at a = 10.50 (Re, = 10', Moo = 0.5, Q+ = 0.05;

Case 6)

9.7 Case 6 : Re, = 104, M, = 0.5, Q+ = 0.05

The instantaneous streamlines over the entire airfoil upper surface are shown in fig-

ures 52 through 55 for a = 10.5', 120, 13.50, and 150, respectively. At a = 10.50,

a recirculating region is present near the trailing edge and the reversed flow extends

over the entire airfoil upper surface. The trailing edge recirculating region divides into

two separate recirculating regions at a = 120. The recirculating region attached at the

trailing edge is shed in the wake at a = 13.50, while the other one expands and is still

attached to the airfoil surface. With increase in a two more recirculating regions appear

and are observed at a = 15'. The development of the flow structures in this case resem-

bles Cases 1, 2, 4, and 5. However, the flow structures are not constrained to only a part

of the airfoil upper surface. The primary recirculating region appears near the trailing

edge and extends over the entire airfoil surface before breaking down into secondary and

tertiary recirculating regions.
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Figure 53: Instantaneous streamlines at a = 120 (Re, = 10', M. = 0.5, + = 0.05;

Case 6)
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Figure 54: Instantaneous streamlines at a = 13.5' (Re, = 104, Mo = 0.5, Q• = 0.05;

Case 6)
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Figure 55: Instantaneous streamlines at a = 15' (Re, = 10', M, = 0.5, Q+ 0.05;

Case 6)

9.8 Case 7 : Re, = 105, M, = 0.5, Q+ = 0.2

The instantaneous streamlines are presented for a = 150, 180, 190, and 19.50 in

figures 56 through 59. The instantaneous streamlines at a = 150 (figure 56) show the

presence of the primary recirculating region near the leading edge in the close-up figure

of the boxed region. In particular, the primary recirculating region forms at a = 14.90

as compared to a = 18.80 for Case 4. The primary recirculating region expands in a

direction normal to airfoil surface with increase in a. This can be observed at a = 180.

At a = 190, the secondary and tertiary recirculating regions are also evident. Up to

a = 190, the development of the flow field is very similar to Cases 1, 2, 4, 5 and 6.

However, at a = 19.50, multiple recirculating regions are seen attached to the airfoil

surface. Similar results have been reported in an analytical study by Smith [38] and in a

numerical study by Ghia et al [15] at Re, = 4.5 X 104, where simultaneous appearances

of multiple recirculating regions near the leading edge at high Reynolds numbers were

found. The pressure coefficient contours at a = 180, and 19.50 in figures 60 and 61,

respectively, show the appearance of a shock in the flowfield at a = 19.50. Examination
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Figure 56: Instantaneous streamlines at a 150 (Re, = 10', M,, = 0.5, Q+ = 0.2; Case

7)

of the Mach contours and the divergence of velocity in the flowfield (not shown here)

also indicates a shock. The shock appears between a = 190 and a = 19.5'. A separate

inviscid computation showed similar appearance of a shock near the leading edge, which

proves that the appearing shock is an inviscid phenomenon. For the inviscid case, the

shock appears at a smaller angle of attack and nearer to the leading edge than in the

viscous case. The length scale associated with the recirculating regions in this case is

observed to be very small as compared to those in the other cases.

9.9 Effect of compressibility

The results indicate important trends related to the increase in Mach number. In the

Cases 1 & 4 and 2 & 5, the pitch rate and Reynolds number are fixed while the Mach

number is increased from 0.2 to 0.5. Increasing the Mach number (at fixed Reynolds

number and pitch rate) causes the primary recirculating region to form farther from

the airfoil surface and delays its formation. Sankar and Tassa [35] also saw a delay

in the formation of the "leading edge vortex" (primary recirculating region) when the

Mach number was increased from 0.2 to 0.4 at Rec = 5.0 x 10'. Figure 62 displays
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Figure 57: Instantaneous streamlines at a =18' (Re, 1 0', M. 0.5, QOj =0.2; Case
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Figure 58: Instantaneous streamlines at a = 19' (Re, = 10', M,,= 0.5, Q =0.2; Case

7)
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Figure 59: Instantaneous streamlines at a 1 9.5' (Re, 1 0', M,, 0.5, Q = 0.2;

Case 7)
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Figure 60: Pressure coefficient contours at a= 180 (Re, 10'~, M,, = 0.5, Q+ 0.2;

Case 7)
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Figure 61: Pressure coefficient contours at a=19.5' (Re, = 10', Moo = 0.5, Q+ 0.2;

Case 7)

the angle at which the primary recirculating region first appears as a function of the

pitch rate for two different Mach numbers at Re, = 10'. At a constant pitch rate, the

formation of the primary recirculating region is delayed to higher angles when the Mach

number is increased from 0.2 to 0.5. The surface pressure coefficient was compared

to study the effect of Mach number. Figure 63 shows that for a fixed pitch rate and

Reynolds number, increasing the Mach number causes a decrease in the leading edge

suction pressure coefficient which in turn results in a lower adverse pressure gradient on

the airfoil upper surface. The decreased adverse pressure gradient on the top surface

at higher Mach numbers retards the movement of the reversed flow region toward the

leading edge but increases the thickness of the reversed flow region and eventually delays

the formation of the primary recirculating region. The length scale associated with the

flow structures increase as well. The decrease in the magnitude of the leading edge

suction pressure coefficient is primarily due to the compressibility effects on the boundary

layer, which increase the effective radius of the leading edge of the airfoil and in turn

lead to a decrease in the leading edge suction pressure coefficient. This is opposite to

the behavior expected from a quasi-stationary application of the Prandtl-Glauert rule,
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Figure 62: Effect of Mach number and pitch rate on the appearance of the primary

recirculating region at Re, = 10'

where CpM/Cp, = 1/ 1 - M 2 (CpM is the pressure coefficient for a compressible case of

Mach number M and Cp, is the pressure coefficient for an incompressible case).

9.10 Effect of pitch-rate

The flowfield is strongly dependent on the pitch rate. Comparison of Cases 1, 2 and

3, or 4, 5 and 6 exhibit the effects of the pitch rate at a fixed Mach number and Reynolds

number. The pitch rate is decreased from 0.2 through 0.05 in cases 1 through 3 and 4

through 6. Increase in the pitch rate of the airfoil delays the formation of the primary

recirculating region to higher angles of attack. The primary recirculating region forms

closer to the leading edge on the upper surface. It is also observed that decrease in

the pitch rate causes the transition from a predominantly leading-edge separation to a

complex separation over the entire airfoil. Figure 62 shows the delay in the formation

of the recirculating region with increase in pitch rate at constant Mach numbers and

Re, = 10'. It should be noted that the delay in the formation of the recirculating region

to higher angles does not mean that there is an increase in the actual time from start

of pitch-up to the appearance of the recirculating region (the pitch rate is different).
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Figure 63: Comparison of the surface pressure coefficient at ca 16.50 for two different

Mach numbers (Re, = 10', Q+ = 0.2)

At higher pitch rates, there is a decrease in the adverse pressure gradient on the upper

surface of the airfoil (figure 64) that can also be explained from the potential flow theory,

which slows down the development of the reversed flow region and defers the appearance

of the primary recirculating region to a higher angle.

9.11 Effect of Reynolds number

The flowfield is sensitive to the change in Reynolds number. Cases 4 and 7 are

compared to study the effect of increase in Reynolds number at a fixed Mach number

and pitch rate. Increase in the Reynolds number hastens the appearance of the primary

recirculating region and decreases the length scale of the flow structures. The primary

recirculating region forms closer to the leading edge on the upper surface at higher

Reynolds number. At Re, = 10' and M,, = 0.5, a shock appears on the top surface. The

appearance of the shock was found to be an inviscid phenomenon. Multiple recirculating

regions develop simultaneously near the leading edge at higher Reynolds number and

cause a complex separation of the boundary layer. Up to the formation of the shock, the

evolution of the flowfield is identical in both cases except for the lag. The formation of the
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Figure 64: Comparison of the surface pressure coefficient at a = 13.50 for two different

pitch rates (Re, = 104, M, = 0.2)

recirculating regions near the leading edge is not induced by the shock. Chandrasekhara

et al [9] observed the presence of similar shocks near the leading edge at Mc = 0.45 and

Re, = 3.6 x 10', in the experiments.

9.12 Linear Stability Analysis

A linear incompressible stability analysis was conducted to determine whether the

formation of the primary recirculating region is related to an instability of the flow. The

basic flow required for the stability analysis was obtained from the numerical simula-

tions for Cases 1 and 2, which have been described in the preceding subsections. The

Mach number in the flowfield does not exceed 0.6 in both the cases, and therefore an

incompressible analysis was deemed sufficient.

In the stability analysis of a basic flow field, a small disturbance is introduced to the

basic flow and the development of the flow field in time is sought to determine whether

the flow field is stable or unstable. The velocities and the pressure are written as

u=U+u'; v=V+v'; p=P+p' (103)

where U, V, and P denote the basic flow and u', v/, and p' denote the disturbances in the
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velocities and the pressure. These expressions are substituted into the incompressible

Navier-Stokes equations which are then linearized. The disturbances are described as a

complex perturbation streamfunction of the form

0'(x, y, t) = o(y) exp{i(kx - wt)} (104)

where k and w are the complex wavenumber and frequency respectively, Wc(y) is the com-

plex amplitude function. The perturbed velocities are defined in terms of the perturbed

streamfunction (0') and the pressure is eliminated from the linearized Navier-Stokes

equation, which result in the following equation

[ (D' - k2)' + U(D 2 - k2 ) 02U _V - k)D - DTRe1y 2 T x

y i U 2 k(D _ k2 )W =0 (105)
+ik- - t _D] Wyx - - =D

Dy Re Dyax k

where the operator 'D' denotes differentiation with respect to y. Details of the derivation

of the above equation is given in Appendix E.

Equation (105) is a fourth order complex differential equation which together with

the appropriate boundary condition defines the stability eigenvalue problem. In the

present study, the reference frame is assumed to be attached to the airfoil surface and

the x- and y-directions are aligned in the tangential and normal directions to the airfoil

surface, respectively. The airfoil is pitching up at a constant pitch rate and therefore

the boundary conditions can be written as

u' = v'= 0 or (y) = Dcp(y) = 0 at y=O (106)

d 2u' dv'
- -=0 or Dp(y)=D3 p(y)=0 at y=oo (107)

dy 2  dy

The stability eigenvalue problem was solved by utilizing the Chevyshev polynomials

to approximate the eigenfunctions [59]. To use the Chevyshev polynomial as a basis,

the domain [0,oo] is mapped into the interval [-1,1] with the new variable z defined as

z = 1 - 2exp(-y/yo), where yo is the edge of the boundary layer. The eigenvalues of the

system of equation are determined using the IMSL subroutines and the most unstable

mode selected out of the set of eigenvalues, based on the imaginary part of the wave
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frequency (w) with the highest value. The flow is unstable when the imaginary part of

the wave frequency is positive and its magnitude is a measure of the temporal growth

rate of the disturbance.

The developed solver was validated by performing two computations to ascertain

the accuracy. Stability computations were performed to determine the neutral curve

(Im[w]=O) for a Blasius profile and a Poiseuille flow. Excellent agreement was found

with previous computations for both the cases.

The instability of the flow can be of two types - absolute instability and convective

instability. A flow is said to be absolutely unstable if localized disturbances spread

upstream and downstream and influence the entire flow field. On the other hand, if

the disturbances are swept away from the source but nevertheless increase in magnitude

with time, the flow is said to be convectively unstable. Figure 65 shows schematically

the two different types of instabilities.

To study the absolute instability, complex wavenumbers are selected and the cor-

responding most unstable wave frequencies are computed to determine the dispersion

relation of complex k and complex w. The point in the k - w plane (wo, k,) where

diw/dk = 0 gives the branch point singularity of the dispersion relation. The disturbance

will grow or decay at its location of generation depending on the sign of Im[wo]. The

flow is absolutely unstable if the branch point singularity of its dispersion relation lies

in the upper half of the complex w plane (Im[wo]>0). To study convective instability of

the flow, only real values of the wavenumbers are selected and the most unstable wave

frequency computed. The disturbance will grow in time at a location away from the

source (convectively unstable) if Im[w]>O.

The stability of the flowfield was computed and analyzed. The velocity profiles at dif-

ferent chordwise locations and angles of attack, obtained from the numerical simulation,

were studied. In Case 1, the primary recirculating region appears at approximately 15'.

The stability analysis for this case showed that the flowfield is not absolutely unstable at

any location in the front 50% of the chord up to an angle of attack of 180, which is well

past the angle at which the primary recirculating region appears. This demonstrates

that the primary recirculating region does not form due to an absolute instability of the

flow.
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Figure 66: Maximum temporal growth rate of the disturbance in the flowfield at various

chordwise positions on the airfoil and at different angles of attack (Case 1)

Convective stability analysis was conducted for Case 1. Figure 66 shows the maxi-

mum temporal growth rate for the velocity profiles at different chordwise positions of the

airfoil for different angles of attack. Figure 67 shows the wavenumbers corresponding to

the maximum temporal growth rate at different chord positions of the airfoil. It is seen

that the flow is convectively unstable over the entire airfoil upper surface and the insta-

bility increases in magnitude with the increase in the angle of attack. The magnitude of

convective instability is also higher in the region near the leading edge and increases at

a faster rate with increase in the angle of attack as compared to the aft portion of the

airfoil. From the numerical simulation we had seen that the primary recirculating region

appears around 18% chord position for Case 1. Therefore it can be said that the appear-

ance of the primary recirculating region may be due to the convective instability of the

flowfield near the leading edge. The wavenumber of the disturbance (normalized by the

chord length) corresponding to the maximum temporal growth rate at the 18% chord

position is approximately 50 (figure 67), which corresponds to a wavelength of around

12.5% of the chord and corresponds roughly to the size of the primary recirculating

region.

Figures 68 and 69 show the maximum temporal growth rate and the corresponding
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Figure 67: Wavenumber corresponding to maximum temporal growth rate of the dis-

turbance at various chordwise positions on the airfoil and at different angles of attack

(Case 1)

wave number at different chordwise positions and angles of attack for Case 2. Case 2

represents a decrease in the pitch rate as compared to Case 1 while the Mach number

and Reynolds number are the same. It is observed that the magnitude of the instability

(temporal amplification rate) is much higher for Case 2 as compared to Case 1 at any

particular angle. This suggests that the primary recirculating region will appear at a

smaller angle of attack for this case with respect to Case 1. A similar trend was observed

in the numerical simulations which is shown in figure 62. The wavenumber (normalized

by the chord length) corresponding to the maximum growth rate at the location where

the primary recirculating region appears is approximately 40, which in turn relates to a

disturbance wavelength of around 16% of the chord. Sections 9.1 and 9.3 describe that

the decrease in the pitch rate at a constant Mach number and Reynolds number leads

to an increase in the size of the primary recirculating region, which is also indicated in

the linear stability analysis.

The linear stability analysis shows that the appearance of the primary recirculating

region is related to the convective instability of the flowfield near the leading edge of

the airfoil. The wavelength of the disturbance is comparable to the size of the primary
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Figure 68: Maximum temporal growth rate of the disturbance in the flow-ield at various
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recirculating region as seen from the full Navier-Stokes simulations. The trend with

regards to the effect of change in pitch rate on the size of the primary recirculating

region and the angle at which it first appears matches with the observations from the

direct numerical simulation.

9.13 Flow Control

Control of dynamic stall is very important to effectively utilize it in unsteady aerody-

namic applications. There have been very few studies in the past to investigate different

flow control techniques to delay dynamic stall. The active control using modulated suc-

tion/injection to manage the dynamic stall vortex has been studied the most and has

been quite successful. But, there are practical problems in incorporating this control

technique in the small blades of the helicopter rotor.

The present research project has been successful in tracing the formation of the

dynamic stall vortex to a critical point in the flowfield. This information may be very

useful in investigating different flow control methods because it gives an idea with respect

to the location in the flowfield where flow control has to be applied to be most effective.

A study was conducted to delay the formation of the primary recirculating region

by preferential heating and cooling of the entire airfoil surface. It has been observed in

the results presented that the formation of the primary recirculating region depends to

a great extent on the magnitude of the adverse pressure gradient on the airfoil upper

surface. At higher Mach numbers, the leading edge suction pressure coefficient decreases

as compared to that at lower Mach numbers. This leads to a decrease in the adverse

pressure gradient on the airfoil upper surface and an eventual delay in the formation of

the primary recirculating region. The same idea of decreasing the leading edge suction

pressure coefficient can be utilized to delay the formation of the primary recirculating

region. A preferential heating of the region near the leading edge and cooling of the

trailing edge region can effectively lead to a decrease in the leading edge pressure coeffi-

cient and increase in pressure coefficient near the trailing edge. This on the other hand

may lead to a decrease in the adverse pressure coefficient on the airfoil upper surface.

Simultaneous heating of the leading edge region and cooling of the trailing edge
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Figure 70: Profile of the temperature applied on airfoil surface

region was applied to Case 1 (Re, = 10', Mo = 0.2, Q+ = 0.2). Both upper and

lower surfaces of the airfoil were either heated or cooled for simplicity. The temperature

profile that was applied on the airfoil surface is shown as a function of the chordwise

position in figure 70. The profile is a modified sinusoidal function. The temperature

was applied to the surface at the start of the pitch up motion of the airfoil from zero

degrees as an exponential function of time to reach the final value shown in the figure

at approximately 10.

The instantaneous streamlines over the airfoil for Case 1 with modulated heating

and cooling are shown in figures 71 to 75 at a = 13.50, 15.00, 16.50, 18.00, and 21.00. At

a = 13.5', there is already reversed flow over the entire airfoil upper surface. There are

also two recirculating regions present near the trailing edge but none near the leading

edge. By a = 15.00, the reversed flow has considerably increased in thickness and is of

the order of the thickness of the airfoil. But, there is no presence of primary recirculating

region near the leading edge. For Case 1 without heating, it was seen that the primary

recirculating region appeared at a = 15.00 at 18% chord position and the reversed flow

was much thinner. Figure 73 shows the presence of the primary recirculating region near
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Figure 71: Instantaneous streamlines at a = 13.50 for Case 1 with modulated heating

and cooling

the leading edge at a = 16.50. In fact, the primary recirculating region appears due to

a breakup of the trailing edge vortex and at approximately 60% chord position. The

primary recirculating region grows in size with increase in the angle of attack and moves

upstream. This is shown in figure 74 at a = 18.00. The secondary recirculating region

can be seen at a = 21.90' in figure 75. The development of the flowfield is very similar

to the case where there is no modulated heating or cooling. The difference in the two

cases is the position of the primary recirculating region and the angle of attack of its

first appearance. Modulated heating delays the formation of the primary recirculating

region by about 10. The recirculating region also appears at a farther distance from the

leading edge and the airfoil upper surface as compared to the case without any heating.

The flow structures are much bigger in size and cover the entire airfoil upper surface.

The surface pressure coefficients are shown in figures 76 to 79. The figures show

a comparison of the surface pressure coefficients for Case 1 without heating, Case 1

with modulated heating and cooling, and Case 4 (which denotes the effect of increase

in compressibility). From the figures it can be seen that modulated heating of the

leading edge region and cooling of the trailing edge region of the airfoil surface leads to
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Figure 72: Instantaneous streamlines at a 15.00 for Case 1 with modulated heating

and cooling
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Figure 73: Instantaneous streamlines at a = 16.5' for Case 1 with modulated heating

and cooling
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Figure 74: Instantaneous streamlines at a 18.00 for Case 1 with modulated heating

and cooling
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Figure 75: Instantaneous streamlines at a = 21.0' for Case 1 with modulated heating

and cooling
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Figure 76: Surface pressure coefficient at a = 13.50

a substantial drop in the leading edge suction coefficient which is comparable to that

at M, = 0.5. The adverse pressure gradient on the airfoil surface is also less when the

airfoil surface is heated. But, as is seen from the instantaneous streamline plots, this

does not prevent the formation of the reversed flow region on the airfoil upper surface.

To summarize, it can be said that modulated heating and cooling of the airfoil

surface does not delay the formation of the primary recirculating region by more than

2-3 degrees. It is not a very efficient way of controlling dynamic stall. Further studies

need to be done to test other flow control techniques like generation of acoustic pulses

on the airfoil surface to delay the formation of the primary recirculating region.
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Table 4: CPU and Memory Requirements for the computations on Cray C90

Case fi Memory (in Mw) J CPU-time (in hours)

1c 9.8 7

7b 128 125

9.14 Code Performance

The Navier-Stokes solver is fully-vectorized and was run on the Cray C90. Some

typical CPU-time and memory requirements for the computations are shown in Table 4.

The solver has a sustained performance of approximately 380 MFLOPS.
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10 CONCLUSIONS AND SCOPE OF FUTURE

WORK

10.1 Summary

The effects of compressibility, pitch rate and Reynolds number on the initial stages of

boundary-layer separation on a NACA-0012 airfoil pitching about its quarter chord posi-

tion have been studied numerically. Computations have been performed using two sepa-

rate algorithms for the compressible laminar Navier-Stokes equations. The first method,

denoted the structured grid algorithm, utilizes a structured, boundary-fitted C-grid and

employs the implicit approximate-factorization algorithm of Beam and Warming. The

solver was developed originally by Visbal [48, 49] for an 0-grid topology and has been

modified to employ a C-grid, Method of Characteristics boundary condition at the outer

boundary and the Geometric Conservation Law to eliminate the grid movement related

errors. The second method, denoted the unstructured grid algorithm, utilizes an un-

structured grid of triangles and employs the flux-difference splitting method of Roe and

a discrete representation of Gauss' Theorem for the inviscid and viscous terms, respec-

tively. A number of steady and unsteady computations have been performed to prove

the accuracy of the two algorithms, including the boundary layer over a flat plate, sta-

tionary NACA-0012 airfoil at a = 0', and pitching NACA-0015 airfoil. The test cases

were compared with available analytical solutions or previous computations. The effects

of implicit and explicit artificial dissipation, and the temporal and spatial resolution

have been studied in detail for the research problem. Accurate grid-converged solutions

have been obtained for the flow.

The principal results of the study are:

* The emergence of the primary recirculating region has been traced to a pair of
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critical points (a center and a saddle) that form as a pure shear at a single point

and immediately bifurcate and move apart.

"* Secondary and tertiary recirculating regions form after the appearance of the pri-

mary recirculating region. The secondary recirculating region interacts with the

primary recirculating region to eject the fluid close to the wall in a direction ap-

proximately normal to the wall. The ejection of the fluid near the wall signifies

boundary layer separation.

"* The accuracy of the computations has been confirmed by the close agreement be-

tween the structured and unstructured grid computations, and the grid refinement

study for the structured grid computations.

Mach number

e Increase in Mach number from 0.2 to 0.5 (at fixed Reynolds number and pitch

rate) delays the formation of the primary recirculating region and causes it to form

farther from the airfoil surface. The compressibility effects on the boundary layer

result in a decrease in the magnitude of the leading edge suction pressure coefficient

and a consequent decrease in the adverse pressure gradient on the upper surface.

The decrease in adverse pressure gradient retards the movement of reversed flow

region towards the leading edge and hence delays the formation of the primary

recirculating region.

Pitch rate

" Increase in pitch rate from 0.05 through 0.2 (at fixed Mach number and Reynolds

number) causes the transition from trailing edge separation to leading edge sepa-

ration.

" Increase in pitch rate delays the formation of the primary recirculating region to

higher angles of attack. This is due to the decrease in the adverse pressure gradient

on the airfoil upper surface which retards the development of the reversed flow

region on the upper surface and the formation of the primary recirculating region.

The primary recirculating region also appears closer to the leading edge.
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Reynolds number

"* Increasing the Reynolds number from 10' to 10' (at fixed Mach number and pitch

rate) hastens the appearance of the primary recirculating region and decreases the

length scale of the flow structures.

"* Multiple recirculating regions appear simultaneously near the leading edge.

Shock wave

" A shock appears on the top surface at Re, = 10', M,, = 0.5, and Q7+ = 0.2 at

a = 19.50. A separate inviscid computation also showed a similar appearance of

shock, implying the formation of the shock is an inviscid phenomenon. For the

inviscid case, the shock appears closer to the leading edge and also at an earlier

angle of attack as compared to the viscous case.

"* The formation of the recirculating regions near the leading edge was found not to

be induced by the shock.

Stability analysis

• Linear stability analysis of the computed flowfield shows that the formation of the

primary recirculating region is related to the convective instability of the flow. It

also confirms the trend seen in the the numerical simulations with regards to the

effect of change in pitch rate on the appearance of the primary recirculating region.

10.2 Future Work

The field of unsteady aerodynamics is relatively in the nascent stage. A substantial

amount of research has recently focused on the study of the complex unsteady effects in

the flow over a pitching and oscillating airfoil so that ultimately the unsteady effects of a

pitching airfoil may be utilized to an advantage in the design of aerodynamic bodies. The

present work presented in this dissertation has concentrated on the study of incipient

stages of unsteady boundary layer separation and the effects of compressibility, pitch

rate and Reynolds number on the separation process. Computations are still limited to
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relatively low Reynolds number flows (with respect to practical range) due to the memory

restrictions of the computer. Their remains scope for future study in the following areas

9 Practical aerodynamic flows have Reynolds number based on the chord of the

order of 106. Increasing Re, leads to more expensive computations, both in terms

of memory and CPU. Robust and efficient algorithms have to be developed to solve

such flows. The use of parallel computers may be the answer to the problem.

e Flow at high Re, is mainly turbulent. However, there are not any turbulence

models which can accurately simulate the flow in the separated regions [6]. Proper

turbulence models need to be developed for such flows.

* Study of 3-D effects can also be described as important. But, the computer re-

sources available at the present time does not allow an accurate simulation for 3-D

flowfields.

* The control of dynamic stall process is a very important problem that needs to

be addressed. In this study, the formation of the dynamic stall vortex has been

traced to a pair of critical points in the flow field. It might be of interest to apply

different flow control techniques at the location of the formation of these points to

ultimately delay the formation of the dynamic stall vortex.
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A Jacobian Matrices for Structured Grid

Algorithm

Explicit form of the Jacobian matrices has been presented in this appendix. The

matrices are obtained analytically by rewriting the matrices F, G, V1, V2, W1, and W2

in terms of p/J, pu/J, pv/J, and pe/J and differentiating according to eqn. (21) and

eqns. (25) to (29).

The Jacobian matrices A and B given by eqns. (21) and (25), respectively are

A €- •U U - (-y - 2)ý, GU - (-f - 1)ý:v (7' - (1)8)
ý,€o- VU Gv - (Y' - 1)ý,Yu U - (3-y 2)ýyv (-Y - 1)Gy

U(20 - -ye) (3'e - ().-t(3 - 1)uU (3 -te ) - (7' - 1)vU 7'U + ýt

where

U= U,- t; V= V-'t; = (__ 1)(u2 +v2) (109)

U and V are the contravariant velocities described by eqn. (7).

77 ,I• Y 0

B 70 - uV V - ('7 - 2)lhxu 7?Yu- (O - 1)77-v (Y - 1)7 110
77YO - W r xv - (' - 1)77uu V - (-f - 2)77,v (Y - 1)'r (1

V(20- -ye) (-ye - 0)r7x - () y - 1)uV (-ye -0)77, - (-I - 1)vV "yV + qh

Equations (27) and (29) define the Jacobian matrices R and S, respectively.

0 0 0 0

R= -(blu+b 2v) b, b2  0

P -(b 2u + b3v) b2  b3  0

R 41  R42 R43 R44
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where

R41= -{5bu 2 + 2b 2 uv b3v 2 + b47Y(- - 1)(u 2 + v 2 - e)} (112)

R42 = {1b - b4Y('Y -1)}ju + b2V (113)

R 4 3 = b2u ÷±{b 3 - b 47(Y - 1)}v (114)

R44= 54,)(,)'- 1) (115)

0 0 0 0
S -(diu+d 2v) di d2  0 (116)

P -(d 2 u+ d3v) d2  d3  0

S41  S4 2 S43 S44

where

S4 1 = -{dju 2 + 2d2uv + d3v2 + d47 (y - 1)(u 2 + v2 - e)} (117)

S42 = {d - d 4 7(7 - 1)}u + d2v (118)

S34a= d2u -- {d - d47(7Y - l)}v (119)

S44 = d4 Y(Y - 1) (120)

Jacobian matrices P and R are defined by eqns. (26) and (28). The matrices (-P +

Rý) and (-Q + S,) required in the Beam-Warming algorithm (eqns. (39) and (40)) are:

0 0 0 0

(P+)ý (i ) 0 (121)

P 4 1  P 4 2  P 43  P 44

where

b5•,2 2C2 UV)_ V5_'• 2 +_(54) 1(2 ?2
P41= -- ,J -2 ) Uv (v 7(7 )-e) (122)

108y - 1)u (123)

PC b2 + b3 v-b Y(y - 1)v (124)
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coefficients bi (i=l,....4) are given in eqn. (8).

0 0 0 0

Q41 Q42 Q4 Q44

where
Q41 = -Q (+-) u2 2 - d3) v 2 _ 7 d 4 ' 7 ('- 1)(2 - -2- e) (127)

Q42= (-,u (d d - (d(-1)u (128)

a)1 U+ (J )

Q=(2) u(7 -1) (130)

coefficients di (i=l,....4) are given in eq. (10).
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B Geometric Conservation Law

Geometric Conservation Law is based on the basic principle that a uniform steady

flow in a computational domain should remain uniform if there are no external distur-

bances and even if the computational grid moves with time.

The unsteady, compressible, two-dimensional Navier-Stokes equations in strong con-

servation form has been presented in eqn. 1. The corresponding equations in transformed

coordinates (•, y) can be written as :

Oq O.F ag 8? as
+ + - + T (131)

where

q U (132)

1(ru + .P + ) (133)

(g+ )(134)

(&Jý (135)

S (q, + ) (136)

and

G YJ; ýY = X,7J; ý, = (-Xty,7 + ytX,7)J

? = -y4J; 7Y = x•J; yt = (xty4 - ytx4)J

Beam-Warming algorithm is applied to eqn. 131 with trapezoidal time differencing to

give :

Aqn At[ (a- + AZ) + a(-AQ + AS) n+ At (-7 + 7) + +(-• + s)] (137)

where

Aqn = qn+1 _ qn = A (U)=( ) AU + UnA ( (138)
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Substituting eqn. 138 in eqn. 137 gives

1 A, r(AF_AUn + -5 a- AR) + (A -7 AS)=

-At ).7 - SR) + (9 S) ) (139)

Approximate factorization of eqn. 139 leads to:

I+ At -(A n)] [I + At 0(Bnf Vn -

UnA (j)n + At{ ('F _ R) + S)}] (140)

where A, B, C, and V are the Jacobian matrices defined by

A- B=L C= D- (141)
4 q B YOq' 'q -q

If we consider uniform steady flow in the computational domain then the flow should

remain unaltered after a time At. Also
S~nU!,= u; v!, v00; pjj p.; pi,! = p.; U = Constant

AUn = 0; F = Constant; G = Constant; R = [0]; S [0] (142)

Substituting eqn. 142 and eqns. 133 to 136 in eqn. 140 leads to :

~A[ ~{u+ + ±l + (ý {ru + 70+±y
-UnA = 0 (143)

or, -At[ (a +U + + (a - + -] U1nA = 14

-At -ý + ' 0 (145)

The metrics xý, x,7, yý, and y, are calculated numerically using finite-difference formulas.

Figure 80 shows 9 nodes of a part of the computational transformed grid. If central finite-

differences are used to compute the metrics at point 'C' of the grid, and Aý and Ai7 are
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assumed to be 1.0, then

O• 0(Y - - Y7 (Y5Y4) ((Y53 -Y Y1 - Y8 + Y6) -

( (- Y8s-Y1 + YO)= 0 (146)

Ox n 0x- 11( 10 (1\2

-- (X5 2 X5  4 ) -- ~(X 2 - X7 ) (\)X 3 -X8 - X1+X6)

() 2 (x 3 - X8 + X6) 0 (147)

12 3

4 4C Ak5

All- 1.0

6 '97 8

=1.0

Figure 80: Part of the transformed (ý, ,1) grid.

Substitution of eqns. (146) and (147) in eqn. (145) gives:

1, +97 it )jj + = o (148)

or, t) In-t (149)

or, A = -At (-xty + ytx') + 7 (Xty - ytx) (150)

For a stationary grid A(1/J) is equal to 0. Geometric Conservation Law states that

for a grid moving with time, the term -UnA(1/J)n (given by eqn. (150)) is non-zero

and has to be appended to the right hand side of the Beam-Warming algorithm.
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C Method of Characteristics

The Method of Characteristics is based on the Euler equations. Figure 81 shows

the outward moving perturbation wave generated by a point source after a time At.

There is a uniform flow of velocity Uoo coming into the domain. The perturbation wave

moves in an approximately elliptical pattern. If the outer boundary is of the shape of

the perturbation wave, the solution can be considered to be one-dimensional near the

outer boundary. A C-grid matches with the wave shape to a certain degree, when the

outer boundary is sufficiently far away from the airfoil. Therefore, a one-dimensional

Method of Characteristics can be used at the outer boundary of the C-grid. In the

Method of Characteristics, the Riemann variables corresponding to the characteristics

moving out of the domain is interpolated from the inside of the domain and all the

Riemann variables corresponding to the characteristics moving inside the domain are

set as boundary conditions at the computational outer boundary.

A local coordinate system (T, V) is constructed orthogonal to the outer boundary

with 7 normal to and directed outward from the boundary. The derivatives along the

boundary (y) are neglected (one-dimensional problem). Therefore, A( ) = 0.

The continuity equation can be written as

Dp OffD- + P 0 (151)

Dt Dy

where U is the velocity in Y-direction. Also p = p(p, s), where p is the pressure and s is

the entropy. Therefore, (d) 'P d +ýý- 12
For locally isentropic flow, ds = 0. From eqns. (151) and (152)

Dp = (9p)\ Dp =l1Dp _ f 13
Dt \O•P J-D - a 2 Dt (153)
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a.At

U airfoil (source)

Figure 81: Perturbation wave around an airfoil.

or, ± (LP +u- +a-=0 (154)
pa Ot Oy 0i

The momentum equation can be written as :

Oa aOf 1  (15+ ;f- + I- = 0 (155)

Addition of eqns. (154) and (155) gives

[aff aifl 1 [rap Opi
p- + (a :f a) ÷ - + a = 0 (156)

Subtraction of eqn. (154) from eqn. (155) gives:

o[ +(W-a)1% -1 [ +((W- a) O:=0 (157)

Let, -x = + a. Therefore,

du a-u aiiu ax 0w
dt at a• dt at a) (158)

dp Op Op d a Op Op

dt at dt a (159)
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Substitution of eqns. (158) and (159) in eqn. (156) gives

d- + LP = 0 (160)pa

For a perfect gas

a2  .P (161)
P

Also, for an isentropic process

p= -3 T- = C4aT-f (162)

where C3, and C4 are constants.

dp = C4 a'2- a2-'1da (163)

-f a{ _--- -21 (164)

and, p =C 47a 2(1

From eqns. (160), (163), and (164)

E + 2 = constant (165)
pa

2a
or, V+ 2a constant (166)7-1

Therefore, the first characteristic equation is

2a d
W + constant along d-=u•+ a (167)

Y-1 dt

Now, let V - a. This gives:

dt Ot O -d Oat (-a (168)

dp Op +p d- O (169)
dt- t a Odt -t (-1

Substitution of eqns. (168) and (169) in eqn. (157) gives

d- P=0 (170)

pa
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dp
_- -2 = constant (171)

pa

2a- - = constant (172)

The second characteristic equation is

2a d_
- - constant along - = u_ a (173)

"Y -l dt

The energy equation can be written as :

Ds 9s Os
= 0 + V5

Dt a 0x (174)

Let = . Then

ds Os Os dx- Os Os

dt - at yO dt at - (175)

From eqns. (174) and (175)

ds

dt = 0 (176)

The third characteristic equation is

d-x
s = constant along u (177)

The equations are assumed to be one-dimensional at the boundary. Therefore, the

velocity in the F-direction (W) can be assumed to be constant along the characteristic

dt -

The fourth characteristic equation is

F = constant along d-- = V (178)
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D Jacobian Matrices for Unstructured Grid

Algorithm

D.1 Inviscid Jacobian

Consider the terms in the inviscid Jacobian (90) involving the matrices

Al = 1-T-OHLAs
2 O'QiA, = 1 T-' OHAs
= 1 O1HrA
2 OqQr

The matrices Al and A, have an identical form, differing only in their evaluation using

Q, and Q,, respectively. Define the matrix A(Q) by

A = T-- HAs

c9Q

Note that A does not include the leading factor of 2

The components Aij are

All = -iiAs

A12 = Ay

A13 = -Ax

A 14 = 0

A 21 = 1 [(-y-3)u2 + (_y _1)v2] Ay + uvAx

A 22 = (3--y) uAy - vAx - iiAs

A23 = -(Y7 -1)vAy-uAAx

A 24 = (-/-1) Ay

A3 1 = -uvAy + 1 [(3- -)v' - (_Y_1)u2] Ax

A3 2 = vAy+('7-1) uAx
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A33 = uAy- (3--y) vAx- iiAs

A34 = -(y-1) Ax

A 41 = [--yue + (-y-i1) (u 3 + uV )] Ay + [YVeC - (-Y -i (u2 V + V 3)] AX

A 42  [-ye - i1 (u2 + V2)] Ay + (-1) uvAx

A 43 = -( 7 -1)uvAy- [ye -- 1l (u 2 3v2)j Ax

A44 = -Y (uAy - vAx) - ftAs

where
Ay Ax

U, U'- - "
As As

Next, consider the terms in the inviscid Jacobian (90) involving the matrices

OCI
B, - =i ( QI - Q' )

'9Q,

where

C = !T'SJAIS'TAs

Define the vector

Note that Q has three components. Then

OC ac iOq
'9QI a Q
ac ioc aý

OQC - e9COQ.

where OC/OQ is a third order tensor

a = T-'DTAs

and

D = 
11
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The components Dijk are defined as

Dijk= 0
'9 Qk

where Iij indicates the component in the i t h row and j t h column of the matrix SIAIS-'.

The expressions are

91 7-l•U [1j31 + A4 1 - 21A 21] + 2 [A2- h 2 2h

+ a [Ac-AS] +k2

D112  = 7 -1 [1ý31 + 141 - 21• 2 1]

D113 = - 7 1) 3 +~ [I1II41 - 21A 2I + 7-1 a [ 3 & 4] U [1i41 - 311
a3-2

U- [A4 +A;3]2 i

D121 = :ý1 [212 - 1ý- 1A41] + ; [2A2 -A3 -A4] + A [A3 -&A4

D122 = 0
D123  (-f -( -1) [21ý2 - -1-4 1] + [A4  A3 ] - 1 [1ý31- I•4 1]

3 [A•1 2 ±A4]

2iiD - [2A 2 -A 3 -&4

D132= !-•' -•-[21I - 1A31-41}

2a2D133  = 0(t-1)- [21ý21 - 131 - 41] + [A4 - 3]

D141 [11A3 + A4 - 2A2 ]

D 142 = 0

D143= - 1 [3 + 1 41 - 2(121] + ;) [A( -A4]
2 =2] [3 = -2=]) =a2]

D21= 3I17 [3u + 2U= & + VJ - I(7-1)=+ ]+

1 [1]() +•2 2)]-Y u
+ 4 - [2u -aii] + I 21 1- ' (6+2 + A2 i + +2a L jj U1  [ 2 a

+.3 U+a) - - ( + a]+ A4 [;1 -a + -~a)]
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D221 -= ( -12  [2a) ] + •-('t ) 4 + 2a---'r- a)2= 0

u ((-1 u 7 1

D2312)

D21•3 = 3 - 2a2 2 a3 (ii + 2u= 7-) + 1 -4- + (a - 2u=)-1

222 2

D232. - (2=1) [2I+ =2- (u •-±)I3 1-(-,a)IA

D233  -21A2 1 (eY-1)• + A31 L2 a(2.±a) +•1 [ •
-A 3 ['Y•1 •(g )] +tA4 "71

- IA21 a + 1A4 - +~2 &- 2A(u= + a)A 3 -- ( -+ ) 4

D2 43 = -IA3 1 [Ig2l(2] ± 1)+ A41 [--73-'(-2u + a)] + IA2 [27-1)j

9A,(.= - a.)

D3.2,= [[-1) + A! "21 [IA 41 - IA31] + '•D11.2

D313 = D_

D321• = m

2a 2 a2

D3221 +A21. 2(-y-1) - + IA3 1 - +A!] + A4 +I (2-= I- 4] ii)2

D222 = 0D 2

12



D331  A1::;k + V=D131

D32 - 2 i2[2_ 2 - 1KY - 1A4!] + VD132

D333 V= D,33

D341  VD4

D343  i:D143

D41 IA{(3 ua 1()~ + [(- -

214 (~a) (i)±i] 2 (-a) a

±A 4 (1u= [1 (-y-1) + +3 (H + ýa [,_ )]

(H -1 ýt ~a) AI _- +~A2  =2H- aIA
(+;14 2a aI3 + U=!- ! 2] + ~ a2! vI!

+1A4 { V" [Qt U) 1 (ý3i -2__ 1 __+(f_-_)1

D42 11 3 + ±I 3 {(' 1)(Hi-ua) 2 + UV [1(41)- ý3]}-=1

U]1{a +i +=)~a 1 (U=

_A U1 12~2 -& 13 - +A1 + I3 A!

D421 +1A31 { 2Hja [~) + I-~ =D i-( 7 i~

a2 + ) -u 1212



U 1 1 2a
+ 'h a12 ÷±-1 ) + 1+ 1

9431
i+3 ( (a 22 1 ii

D42i + • + Al -) .
D431  2 -1) [u 1 + 24A&2 - (U= + a)1A3 1 (H) + -a)-&3 - u- 4 1

(H -2 1)[] + +

{ -1

D432 +-- )i(2 [ 3{ + (-L• H )1] 2a2 + (

D 4 43  = +1ý31 1a ( i/+ ) 1[2 (Y-4 1)_ 2

(I u~a) I 2ii _ U= L('- + 2 a

a + -y-1 &3

(-Y -21 )

2 a

where

Of = 1

The terms2 = d 11 + (ft are

D443 +1ý31 A. -1)n(~ if U~a + S Z 1(f-1
a2 a2Sif~•

The scalar quantities Aj, j = 1,2,3,4, should not be confused with the diagonal matrix

A in (75).
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Define the arrays

OQl aQ
E 2 Q9 andE - 9Q,

The matrices E' and Er have three rows and four columns.

E _11 (prrr + piuI(1 + a1))

(pI + 0),

E12  - 1 Ay

1 Ax
E13 - (PI+ '0( .) As

E14 = 0

- (Pr;'~rOur + PtIiil + UO))(p, + L)2

1 Ax
(pI + L) As

E213  -
1 Ay

(pI + )As
E214 = 0

E31 1 Ii1y

41Y - (v1 {I-E 1 - E

E42 - =E1
E3 (2-1 UK 12 El- =E221

-(7-1) =E'31

(pIfIOIa + Pri4(l + 0,-))
S(p + e)2

1 AY

1 Ax

Ef3 = (PP + +) A)
Er 1 Ax

1~3  (Pr + LO) AS
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31I 2d(7-1)i l =~

32 ~2d f{K2 - uýE12 - VE221

Er (7-1) r - r
2• g3- uZE - r=ED2

E33r 2d (71{ u143 2 E4

where

U 1 p.2 p

O7' - 2 ( P

- {(',-1) [uui• -½ !t+H]

(- - pl+1)

K - (y-1)vi

K(p-±7
(p I + 0)

K; = (pr+Q)

K (7-1)Vj

(Pr 0

KI f
K (Pf +K 2-(P r + L)

The inviscid Jacobian is completed by specification of the matrices 9Qj1,9Qj and

19Qr/OQj in (90). These matrices follow directly from (77) and (78). Assuming linear

reconstruction of the conservative variables (Fig. 9),

1 if j = i

C9Qz _ aIQ if j is point a

OQj q)b•Q if j is point b

,'&IQ if j is point c
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where I is the identity matrix and

1
'a- 2Vabc (nb+ il,) f"ds

1
,b =- 1 (n, + a). ds

2 Vabc

1
S 2Vab (ila + nb) i"dS

and

• Q = diag(Ip, 4 ,, up,, 4 Ipv )

The terms bp, 4,, 4,,, and 4 represent the limiter function 4 for the conservation of

mass, x- and y- momentum, and energy, respectively.

A similar expression for OQ,1/OQj may be obtained taking into account the location

of the cells employed to form Q,.

Special modifications are required for boundary cells, and are not presented herein.

D.2 Viscous Jacobian

The viscous Jacobian (92) may be expressed as

ON ON OQa ON OQb ON OQ, ON OQd

9Qj -OQa OQ3  Ob OQa -- 0 OQj + N OQj

where

Q = (u, v, T)T

and the subscripts a to d refer to the points shown in Fig. 3. Define

fva __ ON

Oad

and similarly for kb, Nc, andgd. Then

NITi = 0
N a

N12 =0
^aN 13 =0

a, , !AyAy 4 - AxAX 4 1)

N22 = +
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N2 3 0

Na2 = !(y~~ AXAY 41)

N =a I-(Ub + Ud) N21  2 ~(Vb + Vd)N 3 1

N42  2 ~(Ub +Ud)N22 2 (Vb + Vd)ST3 2

a1 (A- 4  xxi
N43 = Pr y1) AA4+AX41

R.1b1 =0

=~ ý ,oo(IAYAY12 + AXAX 12 )

Nb = 700c-IAYAX1 2 + AXAY1 2 )

b 1~ dTi

= =oo(AYAX1 2 - ýAXAY1 2)

k 32 =-o. 0 (AYAY12 + :IAXAX12 )

k~b3 1dILN3
21 2dT

N43 = [NA - 1A1.d'Ub + Ud) - lAT3(1,L + -d) 1 (A YAY 12 +Axx)

--(Ub + Ud)Nk23 + I (Vb + Vd)Nk3 3

k 12 = 0

k 1 3 =0

k = -~ =(!AYAY23 + AXAX 23 )

N22c = -0(-IAYAX 23 + AXAY 2 3 )

k 2 3  0

=00AA2 - 2AXAY 23)
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N3 2 - (AYAY23 + !AXAX 23 )

94c,1 = I-(Ub +Ud) 921 +I-(Vb +Vd) 93c

9c=I- ~(Ub + Ud)9 2c2 + I (Vb + Vd)N93c2

c 1
g43= -C~O-r~ (AYAY23 + xAXA 2 3) + I(Ub + Ud)N 2c3 + I(Vb + Vd)N93'

JV1d 3 =

d2  = oo 4AYAY 3 4 +AXAX34)

d - c0(IAYAX 3 4 + AXAY 34 )

Ng23 = -N
2~d1L dTr\1T\

g~j= =2,.(AT[N4 -N(u UdXY3)1V Vb d

**~Oo=T( Yýl)(AYAY34 + !A AX3 x 4 ,u U)4+ (b+ d

2x 3 ~

gAx3 = -- N3

941~~~~~~~X = Xa -U +Xd 2i+I(V d iN

942~~~~~~~~y = 12(b+UYb2+ 2V d9d 1-N3J
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AY2 = Yc - Yb

Ay 3  Yd - Yc

AY4 Ya - Yd

while

Ax 12 = Ax 1 + Ax 2

Ax 23 = Ax 2 + Ax 3

AX 3 4 = AX 3 + Ax 4

Ax 41 = Ax 4 + Ax1

and similarly for AY12, ..... Note that Ax and Ay refer to the x- and y- spacing on

edge k.

The matrix O*a/OQj may be expanded as

OQ" OQ,'qQa
OQa _yQa OQj

Define 9 = OQ./OQ. where the subscript implies points a, b, c or d. Then,

U

p
Q12 1

p

Q13 = 0

Q14 = o

P

pQ22 = o

Q23 = I
p

Q24 =

Q3 = 7(7 21 (-e+U22 )PV

P

Q32 =U
p

Q33 =1V
p

Q 34 ( = l
P
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where the terms are evaluated at the respective point. The remaining matrix is

'9Q I I if e and j correspond

OQj to the same centroid

I jI if * corresponds to a node

where I is the identity matrix and

W Wfor cell j

Eicells Wi

Special modifications are required for boundary cells, and are not presented herein.

D.3 Roe Flux

For completeness, the elements of the Roe flux term SIAýS'-AR in (75) are provided.

S11 = 0

S12 = 1

S13•= 1

S14 = 1

521 = 0

S 2 2 =

523 = U=+a

S24 = u -a

S 3 1 = V

S32 = V

533 = V

S34 = V

541 = V=2

S42 =

S43 = + -

544 = -u a
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S =-i
11

S14 =0

I 1-
22 -a2

a,

24- a2

a 2

ý--1 (7-Y-1). U I

32- 2(-i-+1) i
~33 - 2 4 24

ý- (-y- 1)

S34  = 2 ii

~41 - 24i2 +24i

~42 - 2 4i224i

S43  - 2 ai

7-l -y1
S44  - 24i2

JI = diag(IA1 JIA 2!,IA3J, IA4I)

The vector AR =i - R, where

R = (pPilP;V3,P6)T
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E Stability Analysis

This appendix formulates the equations for a linear hydrodynamic stability anal-

ysis. The non-parallel Orr-Sommerfeld equation has been derived in a rotating frame of

reference assuming incompressible flow and constant pitch-rate. The boundary condi-

tions have also been derived for a constant rate pitching airfoil.

E.1 Governing Equation for Stability Analysis

The non-dimensional continuity and momentum equations for an incompressible flow

in a reference frame attached to the airfoil pitching at a constant pitch rate Q can be

written as
Ou Ov
S+ = 0 (179)

OU Ou Ou lOp 1 (102u +92u\
-+u-+v---2Qv=y-± - + +- (180)at Ox ay pax Re aX2 ay 2 ,
Ov Ov Ov 1_ p 1 ( OaV +2v\)

u=- +--- (181)at ax ay p ay Re \Ox2 a9y2/
A small disturbance is introduced into the base flow an the development of the flow

field in time is monitored to determine whether the flow is stable or unstable. The

velocities and pressure are written as follows

U = U + u' (182)

V = V + v' (183)

p= P+p' (184)

These expressions are substituted into equations (179), (180), and (181) and then

linearized to give the following equations

Ou' Ov'(1)au"- + avy = 0 (185)
Ox D9y
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O u ' tO U , aO U aOu ' v O U/ lO p' 1 (0 2u ' a2u ' /
- +u- +v- +U- +V- -22v'=- -- + --I -+ (186)
at ax O x ay pOax Re ax y2

Ov' ,O V OV uOv' Ov' 1Op' 1 (102v' 02v"\
---i-+ -+ -+ -+ -+2u'u--- + - - + - (187)at ax ay ax ay pOay Re OX2 Oy2 /

The velocity and pressure perturbations may be expressed as

u'(x, y, t) = fi(y) exp{i(kx - wt)} (188)

v'(x, y, t) = ii(y) exp{i(kx - wt)} (189)

p'(x, y, t) = fi(y) exp{i(kx - wt)} (190)

where k and w are the complex wavenumber and frequency respectively, and ýt(y), i,(y)

and fi(y) are the complex complex amplitude functions for the velocities and pressure.

Substituting equations 188, 189, and 190 in equations 185, 186, and 187, we get

ikf± + D) = 0 (191)
,^OU •OU 1

-fiwi + u-t-O + v- + Uviki + Vyi - 2Qi = -fiki + -(-_ik 2 + D2i) (192)

Ox ay Re-i'i +u-+ v- + Ui'ki + Vi + 2Qi = -D• + -(-ik 2 + D2it) (193)

where "D" denotes differentiation with respect to y. The velocity perturbations can be

expressed in terms of complex streamfunction perturbation

U= - . Va = Ox (194)ay ' I OX

where

V'(x, y, t) = p(y) exp{i(kx - wt)} (195)

ýp(y) is the complex amplitude function. Utilization of equations 194 and 195 eliminates

equation 191. From equations 192 and 193 we get

-+ UD i-Uk 2k (-k2 D+D3)o (196)- aD x +a~D+ D y R i•9=-k9-fe

kw -t y i + k2U - ikVD + - D+2fD = -Dj + -(ik3 - ikD 2)W (197)
ayOx Re

From equation 196

[-fi-wD + U i D _ .D~ VD 2 +.kD _. D 3 + u 2Q(98

O + x k k Re kRe +a2-y )- (198)
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Substituting equation 198 in equation 197 gives

- 9y 2  k Ox

+ik RV OyUD ýo -P (D2 - k2)W = 0 (199)

Ty R we 9Oy5X IJ

The above equation is the Orr-Sommerfeld equation for a non-parallel flow. It is a

fourth order complex differential equation which requires 2 boundary conditions at each

of the two boundaries to solve the eigenvalue problem. The following subsection presents

the appropriate boundary conditions for a constant rate pitching airfoil.

E.2 Boundary Condition for Stability Analysis

Suitable boundary conditions need to be specified at the two boundaries to solve the

eigen value problem. The configuration of the airfoil pitching at a constant rate Q about

its quarter chord point is shown in figure 82. X-Y is the reference frame attached to the

airfoil at the quarter chord point and aligned along the chord. X1 -Y1 is the reference

frame attached to the airfoil surface at (x,, yo) and aligned along the surface. Boundary

conditions need to be determined at points A and B on the Y1 axis. A is a point on the

airfoil surface, while B is a point on the Y1 axis at a large distance from the airfoil. The

no-slip condition can be applied at the 'A' boundary, which is written as

ul=v1 =O at Y1=0 (200)

ul and v, are the velocities in the X 1-Y1 frame of reference. Therefore the boundary

condition applied at 'A' is

'o(yi) = DWo(yi) = 0 at Y1 = 0 (201)

To determine the boundary condition at point 'B' 4 on the Y1 axis, let us consider the

velocities in the X1 -Y1 frame at that point

ul = U, cos 0 - Qy cos 0 + Qx sin 0 (202)

v, = -U, sin 0 + Qy sin 0 + Qx cos 0 (203)

4B corresponds to a point where YI = cc
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Y-
B

Figure 82: Configuration of the airfoil

But

Y = Yo+ ylcos9 and x =xo- yisin9 (204)

Therefore equations 202 and 204 become

•1= vUocos9- •cos 9(yo + yicos9)±+ 2sin 9(xo- yisinO)

=Uoocos e - •2yocos9e+ •xosin 9 - y (205)

v1 = -eUosin9±+ sin9(yo + yicone)±+ 2cos9(xo- yisin9)

= -U• sin e + f2yo sin9e+ f~xocos 9 (206)

Therefore

d~u1  dv1- --0 or, (207)
dy• dy1

Fige = DCn(Yi) = 0 at Yi = th (208)

To summarize, the boundary conditions applied at the two boundaries are

Therer Det(yn) = 0 at 2 = 0 and (209)

D=(y1 ) = D3-(y, ) = 0 at Yl = oo (210)
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F Results using Implicit Unstructured
Navier-Stokes Code

During the period of the no-cost extension (30 March 1995 - 30 March 1996), the

research effort focused on the development and implementation of a preconditioner for

the implicit unstructured Navier-Stokes algorithm, and the application of the algorithm

to the simulation of flow past a pitching airfoil. Two cases were considered. The first

case (Re, = 10', Mo, = 0.2, Q+ = 0.2) is identical to Case 1 (see Sections 9.1 and 9.2),

and thus provides a validation of the implicit unstructured Navier-Stokes algorithm.

The second case (Re, = 2 x 10', M.. = 0.2, Q+ = 0.2) represents a configuration not

previously simulated, and provides new insight into the effects of Reynolds number on

incipient separation for pitching airfoils. Specifically, the primary recirculation region

appears at a = 14.50 for Re, = 2 x 10', compared to a = 14.99' for Re, = 104.

Furthermore, the primary recirculation region appears closer to the leading edge for Re, =

2 x 104. These effects of increasing Re, are similar to those obtained at M,, = 0.5 for

Re, = 104 and 10' at Q+ = 0.2 (i.e., Cases 4 and 7 in Sections 9.5 and 9.8, respectively).

F.1 Numerical Algorithm

The implicit algorithm for the Navier-Stokes equations using an unstructured grid

of triangles is described in Section 5. The method is second-order accurate in space,

and either first-order or second-order accurate in time, depending on the choice of the

temporal integration parameters. For these computations, the first-order time accurate

Euler method is used with the time step At chosen to be the same as employed for the

structured grid computation (see Section 9.1). Additionally, the Jacobian is updated

every 20 time steps to reduce the CPU time. Thus, the overall algorithm is first-order

accurate in time. Nonetheless, the results described herein indicate that a highly accurate

solution is achieved, despite the use of the first-order time accuracy, due to the small value

of the time step At.
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Preconditioning was developed for, and implemented in, the BiCGSTAB algorithm

(Section 5.7) using an incomplete LU factorization of the Jacobian matrix as the pre-

conditioner. An LU factorization of the Jacobian is performed, but at each stage of the

factorization the fill elements are ignored. Thus the incomplete LU factorization, to be

used as the preconditioner, has the same sparsity structure as the original Jacobian ma-

trix. This incomplete factorization is known as the ILU(0) factorization, since no fill-in

is allowed. The preconditioning matrix in its LU form is then used to solve systems of

equations as required in BiCGSTAB.

F.2 Details of Computations

An unstructured grid based on 13319 points used by Choudhuri [4], and having 26278

triangular cells was used. There were 180 points on the airfoil surfaces. The grid for

Re, = 2 x 10' was derived from the grid for Re, = 104 by moving the points 1/V/2 closer

to the airfoil. Details of the computational grid can be found in Table 1 and Figs. 1 and

2. All distances are normalized by the airfoil chord c. The grid is attached to the airfoil.

Table 1: Details of Computational Grid

Reynolds Number
104 2 X 10 4

Number of cells 26278 26278
Minimum As 3.17 x 10- 3.17 x 10-3

Maximum As 2.65 X 10-2 2.65 X 10-2

Minimum An 1.06 X 10-3 7.50 X 10-4

Maximum An 1.26 X 10-3 8.89 X 10-4

NBL 10 10
Amax + Amin 3.73 x 105 5.94 1 00'
As Distance along airfoil
An Distance normal to airfoil
NBL Number of points in boundary

layer at mid-chord
Amax, Amin Maximum, minimum area

Results were obtained for laminar flow over a pitching NACA 0012 airfoil at a Mach

number of 0.2, pitching rate Q' of 0.2 and Reynolds numbers of 104 and 2 X 104. The

Jacobian was updated every 20 timesteps, with a timestep of 5 X 10-3. Computations

were performed on a CRAY C90 supercomputer. As described previously, the grid is

attached to the airfoil, and therefore rotates with the airfoil. The velocity is computed
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in the inertial frame; for analysis, the rotational motion of the airfoil is removed and

the velocities computed in the airfoil frame. The streamlines are then plotted using the

velocity components in the airfoil frame.

F.3 Results for Re, = 104

The Re, = 10' case is identical to Case 1 (see Sections 9.1 and 9.2), and provides a

validation of the implicit unstructured grid algorithm for unsteady flows.

The computed lift, drag and moment coefficients, shown in Fig. 3 are in close agree-

ment with the previous computations using both the explicit unstructured grid and im-

plicit structured grid Navier-Stokes algorithms (see [4], Fig. 3).

In Figs. 4 to 11, 13 and 14, the instantaneous streamline plots are shown for both the

explicit unstructured grid and implicit unstructured grid computations at 14.50, 16.50,

19.50, 21.50 and 22.50. The implicit and explicit algorithms are in excellent agreement.

It was previously shown [4] that the explicit unstructured and implicit structured grid

algorithms displayed excellent agreement for this case.

The algorithm required 14.6 hours of CPU time on the CRAY C90 to pitch the airfoil

up to 22.5 degrees. The CPU time per timestep was about 350 seconds for a step with

an update of the Jacobian and the preconditioner, and 7 seconds for a step without the

update. Five iterations were required for convergence of BiCGSTAB at each timestep.

F.4 Results for Re, = 2 x 104

The Re, - 2 x 10' represents a new case. The flow development is similar to

Re = 104, with a few major differences. As shown in Fig. 12, the lift and drag

coefficient generally increase with the angle of attack; the moment coefficient is some-

what constant. Compared to Re, = 10', the lift is slightly increased and drag is slightly

decreased. The variation of lift and drag coefficients with angle of attack is not as mono-

tonic at the higher Reynolds number. These differences are illustrated in Fig. 15.

The flow development is qualitatively similar to Re, = 10': the appearance of the pri-

mary recirculating region at 14.50 (Fig. 16), its growth at 16.50 (Fig. 17), the appearance

of a secondary recirculating region by 19.5' (Fig. 18), the formation of a tertiary recir-

culating region by 22.50 (Fig. 19), and the appearance of a fourth recirculating region

by 23.50 (Fig. 20).
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An examination of the angles at which the primary recirculating region forms shows

that increasing Re, accelerates the onset of flow separation, with the recirculation region

appearing at a lower angle of attack for the higher Re,. The recirculation region also

appears to be closer to the leading edge. These trends are in agreement with published

results [3] at M, = 0.5 and Q+ = 0.2. At this higher Mach number, an increase in Re,

from 10' to 10' accelerates the formation of the primary recirculation region from 18.80

to 14.90 and moves it forward.

The algorithm required 15.7 hours of CPU time on the CRAY C90 to pitch the airfoil

up to 22.5 degrees. The CPU time per timestep was about 350 seconds for a step with

an update of the Jacobian and the preconditioner, and 8 seconds for a step without the

update. At each timestep, six BiCGSTAB iterations were required for convergence of the

iterative solution of the matrix equations.
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Figure 2: NACA0012 Airfoil Mesh Re, = 2 x 10'

Figure 3: NACA0012 Pitching Airfoil Re, = 104, Lift,Drag and Moment Coefficients
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